Continuous Monitoring of the Mining Activities, Restoration Vegetation Status and Solar Farm Growth in Coal Mine Region Using Remote Sensing Data
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27350%2F23%3A10252311" target="_blank" >RIV/61989100:27350/23:10252311 - isvavai.cz</a>
Výsledek na webu
<a href="https://sciendo.com/article/10.2478/minrv-2023-0003" target="_blank" >https://sciendo.com/article/10.2478/minrv-2023-0003</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.2478/minrv-2023-0003" target="_blank" >10.2478/minrv-2023-0003</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Continuous Monitoring of the Mining Activities, Restoration Vegetation Status and Solar Farm Growth in Coal Mine Region Using Remote Sensing Data
Popis výsledku v původním jazyce
Land reclamation of previously mined regions has been incorporated in the mining process as awareness of environmental protection has grown. In this study, we used the open-pit coal mine Oslomej in R. N. Macedonia to demonstrate the activities related to the monitoring process of the study area. We combined the Google Earth Engine (GEE) computing platform with the Landsat time-series data, Normalized Difference Vegetation Index (NDVI), Random Forest (RF) algorithm, and the LandTrendr algorithm to monitor the mining impacts, land reclamation, and the solar farm growth of the coalfield region between 1984 and 2021. The data from the sequential Landsat archive that was used to construct the spatiotemporal variability of the NDVI over the Oslomej mine site (1984-2021) and the pixel-based trajectories from the LandTrendr algorithm were used to achieve accurate measurements and analysis of vegetation disturbances. The different land use/land cover (LULC) classes herbaceous, water, mine, bare land, and solar farm in the Oslomej coalfield area were identified, and the effects of LULC changes on the mining environment were discussed. The RF classification algorithm was capable of separating these LULC classes with accuracies exceeding 90 %. We also validated our results using random sample points, field knowledge, imagery, and Google Earth. Our methodology, which is based on GEE, effectively captured information on mining, reclamation, and solar farm change, providing annual data (maps and change attributes) that can help local planners, policymakers, and environmentalists to better understand environmental influences connected to the ongoing conversion of the mining areas.
Název v anglickém jazyce
Continuous Monitoring of the Mining Activities, Restoration Vegetation Status and Solar Farm Growth in Coal Mine Region Using Remote Sensing Data
Popis výsledku anglicky
Land reclamation of previously mined regions has been incorporated in the mining process as awareness of environmental protection has grown. In this study, we used the open-pit coal mine Oslomej in R. N. Macedonia to demonstrate the activities related to the monitoring process of the study area. We combined the Google Earth Engine (GEE) computing platform with the Landsat time-series data, Normalized Difference Vegetation Index (NDVI), Random Forest (RF) algorithm, and the LandTrendr algorithm to monitor the mining impacts, land reclamation, and the solar farm growth of the coalfield region between 1984 and 2021. The data from the sequential Landsat archive that was used to construct the spatiotemporal variability of the NDVI over the Oslomej mine site (1984-2021) and the pixel-based trajectories from the LandTrendr algorithm were used to achieve accurate measurements and analysis of vegetation disturbances. The different land use/land cover (LULC) classes herbaceous, water, mine, bare land, and solar farm in the Oslomej coalfield area were identified, and the effects of LULC changes on the mining environment were discussed. The RF classification algorithm was capable of separating these LULC classes with accuracies exceeding 90 %. We also validated our results using random sample points, field knowledge, imagery, and Google Earth. Our methodology, which is based on GEE, effectively captured information on mining, reclamation, and solar farm change, providing annual data (maps and change attributes) that can help local planners, policymakers, and environmentalists to better understand environmental influences connected to the ongoing conversion of the mining areas.
Klasifikace
Druh
J<sub>ost</sub> - Ostatní články v recenzovaných periodicích
CEP obor
—
OECD FORD obor
20703 - Mining and mineral processing
Návaznosti výsledku
Projekt
—
Návaznosti
N - Vyzkumna aktivita podporovana z neverejnych zdroju
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Mining Revue
ISSN
2247-8590
e-ISSN
—
Svazek periodika
29
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
PL - Polská republika
Počet stran výsledku
15
Strana od-do
26-41
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—