A spatiotemporal ensemble machine learning framework for generating land use/land cover time-series maps for Europe (2000–2019) based on LUCAS, CORINE and GLAD Landsat
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F22%3A00362680" target="_blank" >RIV/68407700:21110/22:00362680 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.7717/peerj.13573" target="_blank" >https://doi.org/10.7717/peerj.13573</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.7717/peerj.13573" target="_blank" >10.7717/peerj.13573</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A spatiotemporal ensemble machine learning framework for generating land use/land cover time-series maps for Europe (2000–2019) based on LUCAS, CORINE and GLAD Landsat
Popis výsledku v původním jazyce
A spatiotemporal machine learning framework for automated prediction and analysis of long-term Land Use/Land Cover dynamics is presented. The framework includes: (1) harmonization and preprocessing of spatial and spatiotemporal input datasets (GLAD Landsat, NPP/VIIRS) including five million harmonized LUCAS and CORINE Land Cover-derived training samples, (2) model building based on spatial k-fold cross-validation and hyper-parameter optimization, (3) prediction of the most probable class, class probabilities and model variance of predicted probabilities per pixel, (4) LULC change analysis on time-series of produced maps. The spatiotemporal ensemble model consists of a random forest, gradient boosted tree classifier, and an artificial neural network, with a logistic regressor as meta-learner. The results show that the most important variables for mapping LULC in Europe are: seasonal aggregates of Landsat green and near-infrared bands, multiple Landsat-derived spectral indices, long-term surface water probability, and elevation. Spatial cross-validation of the model indicates consistent performance across multiple years with overall accuracy (a weighted F1-score) of 0.49, 0.63, and 0.83 when predicting 43 (level-3), 14 (level-2), and five classes (level-1). Additional experiments show that spatiotemporal models generalize better to unknown years, outperforming single-year models on known-year classification by 2.7% and unknown-year classification by 3.5%. Results of the accuracy assessment using 48,365 independent test samples shows 87% match with the validation points. Results of time-series analysis (time-series of LULC probabilities and NDVI images) suggest forest loss in large parts of Sweden, the Alps, and Scotland. Positive and negative trends in NDVI in general match the land degradation and land restoration classes, with “urbanization” showing the most negative NDVI trend. An advantage of using spatiotemporal ML is that the fitted model can be used to predict LULC in years that were not included in its training dataset, allowing generalization to past and future periods, e.g. to predict LULC for years prior to 2000 and beyond 2020. The generated LULC time-series data stack (ODSE-LULC), including the training points, is publicly available via the ODSE Viewer. Functions used to prepare data and run modeling are available via the eumap library for Python.
Název v anglickém jazyce
A spatiotemporal ensemble machine learning framework for generating land use/land cover time-series maps for Europe (2000–2019) based on LUCAS, CORINE and GLAD Landsat
Popis výsledku anglicky
A spatiotemporal machine learning framework for automated prediction and analysis of long-term Land Use/Land Cover dynamics is presented. The framework includes: (1) harmonization and preprocessing of spatial and spatiotemporal input datasets (GLAD Landsat, NPP/VIIRS) including five million harmonized LUCAS and CORINE Land Cover-derived training samples, (2) model building based on spatial k-fold cross-validation and hyper-parameter optimization, (3) prediction of the most probable class, class probabilities and model variance of predicted probabilities per pixel, (4) LULC change analysis on time-series of produced maps. The spatiotemporal ensemble model consists of a random forest, gradient boosted tree classifier, and an artificial neural network, with a logistic regressor as meta-learner. The results show that the most important variables for mapping LULC in Europe are: seasonal aggregates of Landsat green and near-infrared bands, multiple Landsat-derived spectral indices, long-term surface water probability, and elevation. Spatial cross-validation of the model indicates consistent performance across multiple years with overall accuracy (a weighted F1-score) of 0.49, 0.63, and 0.83 when predicting 43 (level-3), 14 (level-2), and five classes (level-1). Additional experiments show that spatiotemporal models generalize better to unknown years, outperforming single-year models on known-year classification by 2.7% and unknown-year classification by 3.5%. Results of the accuracy assessment using 48,365 independent test samples shows 87% match with the validation points. Results of time-series analysis (time-series of LULC probabilities and NDVI images) suggest forest loss in large parts of Sweden, the Alps, and Scotland. Positive and negative trends in NDVI in general match the land degradation and land restoration classes, with “urbanization” showing the most negative NDVI trend. An advantage of using spatiotemporal ML is that the fitted model can be used to predict LULC in years that were not included in its training dataset, allowing generalization to past and future periods, e.g. to predict LULC for years prior to 2000 and beyond 2020. The generated LULC time-series data stack (ODSE-LULC), including the training points, is publicly available via the ODSE Viewer. Functions used to prepare data and run modeling are available via the eumap library for Python.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10511 - Environmental sciences (social aspects to be 5.7)
Návaznosti výsledku
Projekt
—
Návaznosti
R - Projekt Ramcoveho programu EK
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
PeerJ
ISSN
2167-8359
e-ISSN
2167-8359
Svazek periodika
—
Číslo periodika v rámci svazku
July
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
58
Strana od-do
1-58
Kód UT WoS článku
000839375500001
EID výsledku v databázi Scopus
2-s2.0-85135013793