Time Prediction of Cooling Down Low Range Specimen with Neural Network Exploitation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27360%2F08%3A00019531" target="_blank" >RIV/61989100:27360/08:00019531 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Time Prediction of Cooling Down Low Range Specimen with Neural Network Exploitation
Popis výsledku v původním jazyce
The method exploits sufficient similarity between cooling down curves of individual specimens from the same material but when specimens vary in geometric shape. Time scale altering for individual specimens leads from practical point of view to coincidence of all curves with so called ?general curve? for given material which is calculated from measured values by means of statistic methods. This operation can be denoted as a definition of time transformation coefficient ( TTC ) (for known specimens). If an artificial neural network learns itself to assign time transformation coefficient to known dimensions of specimens, it is then with sufficient accuracy able to determine time transformation coefficient even for specimens with different shapes, for which it has not been learnt. By backward time transformation is then possible to predict probable time course of the cooling down curve and accordingly also the moment of accomplishment of given temperature
Název v anglickém jazyce
Time Prediction of Cooling Down Low Range Specimen with Neural Network Exploitation
Popis výsledku anglicky
The method exploits sufficient similarity between cooling down curves of individual specimens from the same material but when specimens vary in geometric shape. Time scale altering for individual specimens leads from practical point of view to coincidence of all curves with so called ?general curve? for given material which is calculated from measured values by means of statistic methods. This operation can be denoted as a definition of time transformation coefficient ( TTC ) (for known specimens). If an artificial neural network learns itself to assign time transformation coefficient to known dimensions of specimens, it is then with sufficient accuracy able to determine time transformation coefficient even for specimens with different shapes, for which it has not been learnt. By backward time transformation is then possible to predict probable time course of the cooling down curve and accordingly also the moment of accomplishment of given temperature
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
JG - Hutnictví, kovové materiály
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2008
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Hutnik-Wiadomośti Hutnicze
ISSN
1230-3534
e-ISSN
—
Svazek periodika
LXXV
Číslo periodika v rámci svazku
8
Stát vydavatele periodika
PL - Polská republika
Počet stran výsledku
3
Strana od-do
—
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—