Principal Component Analysis of Hydrological Data
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27360%2F11%3A10225343" target="_blank" >RIV/61989100:27360/11:10225343 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Principal Component Analysis of Hydrological Data
Popis výsledku v původním jazyce
In this chapter the principals and applications of principal component analysis (PCA) applied on hydrological data are presented. Four case studies showed the possibility of PCA to obtain information about wastewater treatment process, drinking water quality in a city network and to find similarities in the data sets of ground water quality results and water-related images. In the first case study, the composition of raw and cleaned wastewater was characterised and its temporal changes were displayed. In the second case study, drinking water samples were divided into clusters in consistency with their sampling localities. In the case study III, the similar samples of ground water were recognised by the calculation of cosine similarity, the Euclidean and Manhattan distances. In the case study IV, 32 water-related images were transformed into a large image matrix whose dimensionality was reduced by PCA. The images were clustered using the PCA scatter plots
Název v anglickém jazyce
Principal Component Analysis of Hydrological Data
Popis výsledku anglicky
In this chapter the principals and applications of principal component analysis (PCA) applied on hydrological data are presented. Four case studies showed the possibility of PCA to obtain information about wastewater treatment process, drinking water quality in a city network and to find similarities in the data sets of ground water quality results and water-related images. In the first case study, the composition of raw and cleaned wastewater was characterised and its temporal changes were displayed. In the second case study, drinking water samples were divided into clusters in consistency with their sampling localities. In the case study III, the similar samples of ground water were recognised by the calculation of cosine similarity, the Euclidean and Manhattan distances. In the case study IV, 32 water-related images were transformed into a large image matrix whose dimensionality was reduced by PCA. The images were clustered using the PCA scatter plots
Klasifikace
Druh
C - Kapitola v odborné knize
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
N - Vyzkumna aktivita podporovana z neverejnych zdroju
Ostatní
Rok uplatnění
2011
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název knihy nebo sborníku
Handbook of Research on Hydroinformatics: Technologies, Theories and Applications
ISBN
978-1-61520-907-1
Počet stran výsledku
25
Strana od-do
364-388
Počet stran knihy
520
Název nakladatele
IGI Global
Místo vydání
Hershey, Pennsylvania
Kód UT WoS kapitoly
—