The Usage of Regression Analysis and Artificial Intelligence Tools in The Field of Metallurgy
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27360%2F17%3A10238477" target="_blank" >RIV/61989100:27360/17:10238477 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The Usage of Regression Analysis and Artificial Intelligence Tools in The Field of Metallurgy
Popis výsledku v původním jazyce
The presented article deals with the possibility of using artificial intelligence tools, specifically genetic algorithms, in the metallurgical industry. The genetic algorithms are used here to estimate coefficients of regression functions. In some cases, the standard regression analysis tools lead to incorrect results. And then the genetic algorithms can serve as an optimization tool searching for a certain state space to find functions or functionalities optimum. To verify the correctness of this premise we have used the genetic algorithms to find coefficients of two regression functions types, namely linear regression function and nonlinear regression function. By comparing the results, we have confirmed in the discussion the suitability of using genetic algorithms in the field of regression analysis as well. Another result of this work is the determination of the general cost equation of the foundry furnaces. The data of selected foundries have been used both in classical regression analysis and in genetic algorithms applications.
Název v anglickém jazyce
The Usage of Regression Analysis and Artificial Intelligence Tools in The Field of Metallurgy
Popis výsledku anglicky
The presented article deals with the possibility of using artificial intelligence tools, specifically genetic algorithms, in the metallurgical industry. The genetic algorithms are used here to estimate coefficients of regression functions. In some cases, the standard regression analysis tools lead to incorrect results. And then the genetic algorithms can serve as an optimization tool searching for a certain state space to find functions or functionalities optimum. To verify the correctness of this premise we have used the genetic algorithms to find coefficients of two regression functions types, namely linear regression function and nonlinear regression function. By comparing the results, we have confirmed in the discussion the suitability of using genetic algorithms in the field of regression analysis as well. Another result of this work is the determination of the general cost equation of the foundry furnaces. The data of selected foundries have been used both in classical regression analysis and in genetic algorithms applications.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20501 - Materials engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
METAL 2017: conference proceedings : 26th International Conference on Metallurgy and Materials : (reviewed version) : May 24th-26th 2017, Hotel Voroněž I, Brno, Czech Republic, EU
ISBN
978-80-87294-79-6
ISSN
—
e-ISSN
neuvedeno
Počet stran výsledku
6
Strana od-do
2063-2068
Název nakladatele
Tanger
Místo vydání
Ostrava
Místo konání akce
Brno
Datum konání akce
24. 5. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—