Artifical neural network usage for determining solidus temperature of steels
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27360%2F19%3A10243580" target="_blank" >RIV/61989100:27360/19:10243580 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Artifical neural network usage for determining solidus temperature of steels
Popis výsledku v původním jazyce
The potential use of artificial neural networks to determine the solidus temperature for steel based on composition has been investigated. Input data consist of solidus composition and temperatures both from literature and both from measurements. The primary performance testing of the model was then performed for steel grades measured. Several types of network topologies have been designed and trained and the best model selected. Testing was done on previously unseen data measured by differential thermal analysis method as on new input data. The used method is described. Obtained results are then compared to those measured and calculated by commonly used software among the academic and commercial community like IDS and Thermo-Calc. Performance of these three modelling approaches is discussed by means of selected statistic tools.
Název v anglickém jazyce
Artifical neural network usage for determining solidus temperature of steels
Popis výsledku anglicky
The potential use of artificial neural networks to determine the solidus temperature for steel based on composition has been investigated. Input data consist of solidus composition and temperatures both from literature and both from measurements. The primary performance testing of the model was then performed for steel grades measured. Several types of network topologies have been designed and trained and the best model selected. Testing was done on previously unseen data measured by differential thermal analysis method as on new input data. The used method is described. Obtained results are then compared to those measured and calculated by commonly used software among the academic and commercial community like IDS and Thermo-Calc. Performance of these three modelling approaches is discussed by means of selected statistic tools.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20500 - Materials engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/GA17-18668S" target="_blank" >GA17-18668S: Komplexní experimentální výzkum vybraných vlastností kvaternárních a quinárních systémů Fe-C-O-X(Y), (X,Y=Cr,Ni) za vysokých teplot</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
METAL 2019 : conference proceedings : peer reviewed : 28th International Conference on Metallurgy and Materials : May 22nd-24th 2019, Hotel Voronez I, Brno, Czech Republic, EU
ISBN
978-80-87294-92-5
ISSN
—
e-ISSN
—
Počet stran výsledku
5
Strana od-do
48-53
Název nakladatele
Tanger
Místo vydání
Ostrava
Místo konání akce
Brno
Datum konání akce
22. 5. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—