Layer-controlled nonlinear terahertz valleytronics in two-dimensional semimetal and semiconductor PtSe2
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27360%2F23%3A10252689" target="_blank" >RIV/61989100:27360/23:10252689 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27640/23:10252689 RIV/61989100:27740/23:10252689
Výsledek na webu
<a href="https://onlinelibrary.wiley.com/doi/full/10.1002/inf2.12468" target="_blank" >https://onlinelibrary.wiley.com/doi/full/10.1002/inf2.12468</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/inf2.12468" target="_blank" >10.1002/inf2.12468</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Layer-controlled nonlinear terahertz valleytronics in two-dimensional semimetal and semiconductor PtSe2
Popis výsledku v původním jazyce
Platinum diselenide (PtSe2) is a promising two-dimensional (2D) material for the terahertz (THz) range as, unlike other transitionmetal dichalcogenides (TMDs), its bandgap can be uniquely tuned from a semiconductor in the near-infrared to a semimetal with thenumber of atomic layers. This gives the material unique THz photonic properties that can be layer-engineered. Here, we demonstratethat a controlled THz nonlinearity - tuned from monolayer to bulk PtSe2 - can be realised in wafer size polycrystalline PtSe2 throughthe generation of ultrafast photocurrents and the engineering of the bandstructure valleys. This is combined with the PtSe2 layerinteraction with the substrate for a broken material centro-symmetry permitting a second order nonlinearity. Further, we show layerdependent circular dichroism, where the sign of the ultrafast currents and hence the phase of the emitted THz pulse can be controlledthrough the excitation of different bandstructure valleys. In particular, we show that a semimetal has a strong dichroism that is absentin the monolayer and few layer semiconducting limit. The microscopic origins of this TMD bandstructure engineering is highlightedthrough detailed DFT simulations, and shows the circular dichroism can be controlled when PtSe2 becomes a semimetal and when theK-valleys can be excited. As well as showing that PtSe2 is a promising material for THz generation through layer controlled opticalnonlinearities, this work opens up new class of circular dichroism materials beyond the monolayer limit that has been the case oftraditional TMDs, and impacting a range of domains from THz valleytronics, THz spintronics to harmonic generation
Název v anglickém jazyce
Layer-controlled nonlinear terahertz valleytronics in two-dimensional semimetal and semiconductor PtSe2
Popis výsledku anglicky
Platinum diselenide (PtSe2) is a promising two-dimensional (2D) material for the terahertz (THz) range as, unlike other transitionmetal dichalcogenides (TMDs), its bandgap can be uniquely tuned from a semiconductor in the near-infrared to a semimetal with thenumber of atomic layers. This gives the material unique THz photonic properties that can be layer-engineered. Here, we demonstratethat a controlled THz nonlinearity - tuned from monolayer to bulk PtSe2 - can be realised in wafer size polycrystalline PtSe2 throughthe generation of ultrafast photocurrents and the engineering of the bandstructure valleys. This is combined with the PtSe2 layerinteraction with the substrate for a broken material centro-symmetry permitting a second order nonlinearity. Further, we show layerdependent circular dichroism, where the sign of the ultrafast currents and hence the phase of the emitted THz pulse can be controlledthrough the excitation of different bandstructure valleys. In particular, we show that a semimetal has a strong dichroism that is absentin the monolayer and few layer semiconducting limit. The microscopic origins of this TMD bandstructure engineering is highlightedthrough detailed DFT simulations, and shows the circular dichroism can be controlled when PtSe2 becomes a semimetal and when theK-valleys can be excited. As well as showing that PtSe2 is a promising material for THz generation through layer controlled opticalnonlinearities, this work opens up new class of circular dichroism materials beyond the monolayer limit that has been the case oftraditional TMDs, and impacting a range of domains from THz valleytronics, THz spintronics to harmonic generation
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10300 - Physical sciences
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Infomat
ISSN
2567-3165
e-ISSN
—
Svazek periodika
5
Číslo periodika v rámci svazku
11
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
16
Strana od-do
—
Kód UT WoS článku
001061365300001
EID výsledku v databázi Scopus
2-s2.0-85169840330