Atomic Layer-controlled Nonlinear Terahertz Valleytronics in Semi-metal and Semiconductor PtSe2
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27360%2F23%3A10254307" target="_blank" >RIV/61989100:27360/23:10254307 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27640/23:10254307 RIV/61989100:27740/23:10254307
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/10298911" target="_blank" >https://ieeexplore.ieee.org/document/10298911</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/IRMMW-THz57677.2023.10298911" target="_blank" >10.1109/IRMMW-THz57677.2023.10298911</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Atomic Layer-controlled Nonlinear Terahertz Valleytronics in Semi-metal and Semiconductor PtSe2
Popis výsledku v původním jazyce
As a two-dimensional (2D) material for terahertz (THz) applications, platinum diselenide (PtSe2) can be uniquely tuned from a semiconductor in the near infrared to a semimetal with the number of atomic layers, in contrast to other transition metal dichalcogenides (TMDs). Consequently, the material has unique photonic properties at THz frequencies that can be enhanced by atomic layer engineering. Here, we demonstrate that a controlled THz nonlinearity - tuned from monolayer to bulk PtSe2 - can be realized in wafer size PtSe2 through the generation of ultrafast photocurrents and the engineering of the bandstructure valleys. Further, we show layer dependent circular dichroism, where the sign of the ultrafast currents and hence the phase of the emitted THz pulse can be controlled through the excitation of different bandstructure valleys. In particular, we show that a semimetal has a strong dichroism that is absent in the monolayer and few layer semiconducting limit. The microscopic origins of this TMD bandstructure engineering is highlighted through detailed DFT simulations, and shows the circular dichroism can be controlled when PtSe2 becomes a semimetal and when the K-valleys can be excited. As well as showing that PtSe2 is a promising material for THz generation through layer controlled optical nonlinearities, this work opens up new class of circular dichroism materials beyond the monolayer limit that has been the case of traditional TMDs, and impacting a range of domains from THz valleytronics to harmonic generation.
Název v anglickém jazyce
Atomic Layer-controlled Nonlinear Terahertz Valleytronics in Semi-metal and Semiconductor PtSe2
Popis výsledku anglicky
As a two-dimensional (2D) material for terahertz (THz) applications, platinum diselenide (PtSe2) can be uniquely tuned from a semiconductor in the near infrared to a semimetal with the number of atomic layers, in contrast to other transition metal dichalcogenides (TMDs). Consequently, the material has unique photonic properties at THz frequencies that can be enhanced by atomic layer engineering. Here, we demonstrate that a controlled THz nonlinearity - tuned from monolayer to bulk PtSe2 - can be realized in wafer size PtSe2 through the generation of ultrafast photocurrents and the engineering of the bandstructure valleys. Further, we show layer dependent circular dichroism, where the sign of the ultrafast currents and hence the phase of the emitted THz pulse can be controlled through the excitation of different bandstructure valleys. In particular, we show that a semimetal has a strong dichroism that is absent in the monolayer and few layer semiconducting limit. The microscopic origins of this TMD bandstructure engineering is highlighted through detailed DFT simulations, and shows the circular dichroism can be controlled when PtSe2 becomes a semimetal and when the K-valleys can be excited. As well as showing that PtSe2 is a promising material for THz generation through layer controlled optical nonlinearities, this work opens up new class of circular dichroism materials beyond the monolayer limit that has been the case of traditional TMDs, and impacting a range of domains from THz valleytronics to harmonic generation.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10300 - Physical sciences
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
International Conference on Infrared, Millimeter, and Terahertz Waves, IRMMW-THz 2023
ISBN
979-8-3503-3660-3
ISSN
2162-2027
e-ISSN
—
Počet stran výsledku
2
Strana od-do
1-2
Název nakladatele
IEEE
Místo vydání
Piscataway
Místo konání akce
Montréal
Datum konání akce
17. 9. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
001098999800062