Estimating credit rating models by a logistic regression approach
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27510%2F12%3A86079917" target="_blank" >RIV/61989100:27510/12:86079917 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Estimating credit rating models by a logistic regression approach
Popis výsledku v původním jazyce
Managing credit risk is an important part of risk management and this area has attracted a huge attention in last decades, especially in the context of recent financial crisis. An increasing need to actively and effectively manage credit risk across manysectors of the economy has resulted in more sophisticated and readily available tools and techniques. The main principle of these models is to give basic information about the company?s operating characteristics; to identify alert factors and assign a rating classification. Quantitative models provide rating based on publically available financial information only. The paper is aimed at the estimation of credit rating models using a large sample of European companies. By means of a multinomial logisticregression approach, two models are estimated in this paper, both of them with high classification ability. Results of the analysis confirm the importance of profitability, capitalization and interest coverage for credit rating assignmen
Název v anglickém jazyce
Estimating credit rating models by a logistic regression approach
Popis výsledku anglicky
Managing credit risk is an important part of risk management and this area has attracted a huge attention in last decades, especially in the context of recent financial crisis. An increasing need to actively and effectively manage credit risk across manysectors of the economy has resulted in more sophisticated and readily available tools and techniques. The main principle of these models is to give basic information about the company?s operating characteristics; to identify alert factors and assign a rating classification. Quantitative models provide rating based on publically available financial information only. The paper is aimed at the estimation of credit rating models using a large sample of European companies. By means of a multinomial logisticregression approach, two models are estimated in this paper, both of them with high classification ability. Results of the analysis confirm the importance of profitability, capitalization and interest coverage for credit rating assignmen
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
AH - Ekonomie
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2012
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ECON '12
ISSN
1803-3865
e-ISSN
—
Svazek periodika
21
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
10
Strana od-do
84-93
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—