Comparison of Credit Scoring Models on Probability of Default Estimation for US Banks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27510%2F13%3A86082949" target="_blank" >RIV/61989100:27510/13:86082949 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Comparison of Credit Scoring Models on Probability of Default Estimation for US Banks
Popis výsledku v původním jazyce
This paper is devoted to the estimation of the probability of default (PD) as a crucial parameter in risk management, requests for loans, rating estimation, pricing of credit derivatives and many others key financial fields. Particularly, in this paper we will estimate the PD of US banks by means of the statistical models, generally known as credit scoring models. First, in theoretical part, we will briefly introduce the two main categories of credit scoring models, which will be afterwards used in application part ? linear discriminant analysis and regression models (logit and probit), including testing the statistical significance of estimated parameters. In the main part of the paper we will work with the sample of almost three hundred U.S. commercial banks which will be separate into two groups (non-default and default) on the basis of historical information. Subsequently, we will stepwise apply the mentioned above scoring models on this sample to derive several models for estimati
Název v anglickém jazyce
Comparison of Credit Scoring Models on Probability of Default Estimation for US Banks
Popis výsledku anglicky
This paper is devoted to the estimation of the probability of default (PD) as a crucial parameter in risk management, requests for loans, rating estimation, pricing of credit derivatives and many others key financial fields. Particularly, in this paper we will estimate the PD of US banks by means of the statistical models, generally known as credit scoring models. First, in theoretical part, we will briefly introduce the two main categories of credit scoring models, which will be afterwards used in application part ? linear discriminant analysis and regression models (logit and probit), including testing the statistical significance of estimated parameters. In the main part of the paper we will work with the sample of almost three hundred U.S. commercial banks which will be separate into two groups (non-default and default) on the basis of historical information. Subsequently, we will stepwise apply the mentioned above scoring models on this sample to derive several models for estimati
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
AH - Ekonomie
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/EE2.3.20.0296" target="_blank" >EE2.3.20.0296: Výzkumný tým pro modelování ekonomických a finančních procesů na VŠB-TU Ostrava</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2013
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Prague Economic Papers
ISSN
1210-0455
e-ISSN
—
Svazek periodika
22
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
19
Strana od-do
163-181
Kód UT WoS článku
000321990300002
EID výsledku v databázi Scopus
—