Finding an Initial Basic Feasible Solution for DEA Models with an Application on Bank Industry
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27510%2F15%3A86096340" target="_blank" >RIV/61989100:27510/15:86096340 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/s10614-014-9423-1" target="_blank" >http://dx.doi.org/10.1007/s10614-014-9423-1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10614-014-9423-1" target="_blank" >10.1007/s10614-014-9423-1</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Finding an Initial Basic Feasible Solution for DEA Models with an Application on Bank Industry
Popis výsledku v původním jazyce
Nowadays, algorithms and computer programs, which are going to speed up, short time to run and less memory to occupy have special importance. Toward these ends, researchers have always regarded suitable strategies and algorithms with the least computations. Since linear programming (LP) has been introduced, interest in it spreads rapidly among scientists. To solve an LP, the simplex method has been developed and since then many researchers have contributed to the extension and progression of LP and obviously simplex method. A vast literature has been grown out of this original method in mathematical theory, new algorithms, and applied nature. Solving an LP via simplex method needs an initial basic feasible solution (IBFS), but in many situations such asolution is not readily available so artificial variables will be resorted. These artificial variables must be dropped to zero, if possible. There are two main methods that can be used to eliminate the artificial variables: two-phase met
Název v anglickém jazyce
Finding an Initial Basic Feasible Solution for DEA Models with an Application on Bank Industry
Popis výsledku anglicky
Nowadays, algorithms and computer programs, which are going to speed up, short time to run and less memory to occupy have special importance. Toward these ends, researchers have always regarded suitable strategies and algorithms with the least computations. Since linear programming (LP) has been introduced, interest in it spreads rapidly among scientists. To solve an LP, the simplex method has been developed and since then many researchers have contributed to the extension and progression of LP and obviously simplex method. A vast literature has been grown out of this original method in mathematical theory, new algorithms, and applied nature. Solving an LP via simplex method needs an initial basic feasible solution (IBFS), but in many situations such asolution is not readily available so artificial variables will be resorted. These artificial variables must be dropped to zero, if possible. There are two main methods that can be used to eliminate the artificial variables: two-phase met
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
AE - Řízení, správa a administrativa
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Computational Economics
ISSN
0927-7099
e-ISSN
—
Svazek periodika
45
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
14
Strana od-do
323-336
Kód UT WoS článku
000348416500008
EID výsledku v databázi Scopus
2-s2.0-84893677408