LU Decomposition in DEA with an Application to Hospitals
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27510%2F16%3A86098950" target="_blank" >RIV/61989100:27510/16:86098950 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/s10614-015-9501-z" target="_blank" >http://dx.doi.org/10.1007/s10614-015-9501-z</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10614-015-9501-z" target="_blank" >10.1007/s10614-015-9501-z</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
LU Decomposition in DEA with an Application to Hospitals
Popis výsledku v původním jazyce
A fundamental problem that usually appears in linear systems is to find a vector satisfying . This linear system is encountered in many research applications and more importantly, it is required to be solved in many contexts in applied mathematics. LU decomposition method, based on the Gaussian elimination, is particularly well suited for spars and large-scale problems. Linear programming (LP) is a mathematical method to obtain optimal solutions for a linear system that is more being considered in various fields of study in recent decades. The simplex algorithm is one of the mostly used mathematical techniques for solving LP problems. Data envelopment analysis (DEA) is a non-parametric approach based on linear programming to evaluate relative efficiency of decision making units (DMUs). The number of LP models that has to be solved in DEA is at least the same as the number of DMUs. Toloo et al. (Comput Econ 45(2):323-326, 2015) proposed an initial basic feasible solution for DEA models which practically reduces at least 50 % of the whole computations. The main contribution of this paper is in utlizing this solution to implement LU decomposition technique on the basic DEA models which is more accurate and numerically stable. It is shown that the number of computations in applying the Gaussian elimination method will be fairly reduced due to the special structure of basic DEA models. Potential uses are illustrated with applications to hospital data set.
Název v anglickém jazyce
LU Decomposition in DEA with an Application to Hospitals
Popis výsledku anglicky
A fundamental problem that usually appears in linear systems is to find a vector satisfying . This linear system is encountered in many research applications and more importantly, it is required to be solved in many contexts in applied mathematics. LU decomposition method, based on the Gaussian elimination, is particularly well suited for spars and large-scale problems. Linear programming (LP) is a mathematical method to obtain optimal solutions for a linear system that is more being considered in various fields of study in recent decades. The simplex algorithm is one of the mostly used mathematical techniques for solving LP problems. Data envelopment analysis (DEA) is a non-parametric approach based on linear programming to evaluate relative efficiency of decision making units (DMUs). The number of LP models that has to be solved in DEA is at least the same as the number of DMUs. Toloo et al. (Comput Econ 45(2):323-326, 2015) proposed an initial basic feasible solution for DEA models which practically reduces at least 50 % of the whole computations. The main contribution of this paper is in utlizing this solution to implement LU decomposition technique on the basic DEA models which is more accurate and numerically stable. It is shown that the number of computations in applying the Gaussian elimination method will be fairly reduced due to the special structure of basic DEA models. Potential uses are illustrated with applications to hospital data set.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BB - Aplikovaná statistika, operační výzkum
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Computational Economics
ISSN
0927-7099
e-ISSN
—
Svazek periodika
47
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
16
Strana od-do
473-488
Kód UT WoS článku
000371796600007
EID výsledku v databázi Scopus
2-s2.0-84960391486