USE OF DECISION TREES FOR PREDICTION OF PROJECT PERFORMANCE
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27510%2F16%3A86097898" target="_blank" >RIV/61989100:27510/16:86097898 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
USE OF DECISION TREES FOR PREDICTION OF PROJECT PERFORMANCE
Popis výsledku v původním jazyce
In today's changing world, the project management risks have to be taken into account by all project focused organizations. One big risk associated with project is a risk of project failure. To increase likelihood of project success, it is important to be able to identify drivers of success. Big advantage of decision trees is possibility of identification the importance of variables. Decision makers have thus a powerful tool in their hands and can determine which project characteristics are important for project success and can focus efforts of project team on them. Another advantage of decision trees is the easiness of visualization, implementing into existing systems and understanding by non-technical people. Decision trees are simply a set of IF-THEN rules. In this study decision trees are used to predict success of development projects of the World Bank. The most important variables identified are Overall Bank Performance, Overall Borrower Performance, Bank Quality of Supervision, Bank Quality at Entry, Implementing Agency Performance and Government Performance. Other variables play only a minor role. Performance of predictive decision tree model was high with accuracy 93.13 % and specificity 89.17 %, so the benefit of decision tree usage was proven.
Název v anglickém jazyce
USE OF DECISION TREES FOR PREDICTION OF PROJECT PERFORMANCE
Popis výsledku anglicky
In today's changing world, the project management risks have to be taken into account by all project focused organizations. One big risk associated with project is a risk of project failure. To increase likelihood of project success, it is important to be able to identify drivers of success. Big advantage of decision trees is possibility of identification the importance of variables. Decision makers have thus a powerful tool in their hands and can determine which project characteristics are important for project success and can focus efforts of project team on them. Another advantage of decision trees is the easiness of visualization, implementing into existing systems and understanding by non-technical people. Decision trees are simply a set of IF-THEN rules. In this study decision trees are used to predict success of development projects of the World Bank. The most important variables identified are Overall Bank Performance, Overall Borrower Performance, Bank Quality of Supervision, Bank Quality at Entry, Implementing Agency Performance and Government Performance. Other variables play only a minor role. Performance of predictive decision tree model was high with accuracy 93.13 % and specificity 89.17 %, so the benefit of decision tree usage was proven.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
AE - Řízení, správa a administrativa
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
IDIMT-2016 : Information Technology, Society and Economy Strategic Cross-Influences : 24th Interdisciplinary Information Management Talks : Sept. 7-9, 2016, Poděbrady, Czech Republic
ISBN
978-3-99033-869-8
ISSN
—
e-ISSN
—
Počet stran výsledku
7
Strana od-do
375-381
Název nakladatele
Trauner
Místo vydání
Linz
Místo konání akce
Poděbrady
Datum konání akce
7. 9. 2016
Typ akce podle státní příslušnosti
CST - Celostátní akce
Kód UT WoS článku
000387756100042