Comparison of logistic regression and decision tree for customer churn prediction in Telecommunications
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27510%2F17%3A10238350" target="_blank" >RIV/61989100:27510/17:10238350 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Comparison of logistic regression and decision tree for customer churn prediction in Telecommunications
Popis výsledku v původním jazyce
Customer churn, loss of customers due to switch to another service pro-vider or non-renewal of commitment, is very common in highly com-petitive and saturated markets such as telecommunications. In order to solve this problem, predictive models need to be implemented to identi-fy customers who are at risk of churning and also key drivers of churn need to be identified. In this study, two models for prediction of customer churn in next 45 days are compared - logistic regression and decision tree. The dataset used contain 16 variables and 50,000 customers in both training and testing data set. Decision tree outperformed in predictive performance logistic regression with hit rate 81.1% and specificity 94%. The most important variables in both classification models were customer dura-tion and contract duration and in logistic regression model also value added services played a big role.
Název v anglickém jazyce
Comparison of logistic regression and decision tree for customer churn prediction in Telecommunications
Popis výsledku anglicky
Customer churn, loss of customers due to switch to another service pro-vider or non-renewal of commitment, is very common in highly com-petitive and saturated markets such as telecommunications. In order to solve this problem, predictive models need to be implemented to identi-fy customers who are at risk of churning and also key drivers of churn need to be identified. In this study, two models for prediction of customer churn in next 45 days are compared - logistic regression and decision tree. The dataset used contain 16 variables and 50,000 customers in both training and testing data set. Decision tree outperformed in predictive performance logistic regression with hit rate 81.1% and specificity 94%. The most important variables in both classification models were customer dura-tion and contract duration and in logistic regression model also value added services played a big role.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
50202 - Applied Economics, Econometrics
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 12th International Conference on Strategic Management and its Support by Information Systems: May 25th-26th, 2017, Ostrava, Czech Republic
ISBN
978-80-248-4046-8
ISSN
2570-5776
e-ISSN
neuvedeno
Počet stran výsledku
9
Strana od-do
282-292
Název nakladatele
VŠB - Technical University of Ostrava
Místo vydání
Ostrava
Místo konání akce
Ostrava
Datum konání akce
25. 5. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000417344100032