On the impact of various formulations of the boundary condition within numerical option valuation by DG method
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27510%2F16%3A86099710" target="_blank" >RIV/61989100:27510/16:86099710 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/46747885:24510/16:00004011
Výsledek na webu
<a href="http://dx.doi.org/10.2298/FIL1615253H" target="_blank" >http://dx.doi.org/10.2298/FIL1615253H</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.2298/FIL1615253H" target="_blank" >10.2298/FIL1615253H</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On the impact of various formulations of the boundary condition within numerical option valuation by DG method
Popis výsledku v původním jazyce
Options, a crucial type of financial instrument, are very challenging as concerns both, the application and valuation. A key property of (exotic) options is to provide a tool to manage the market risk coming from everyday innovations at the market. Due to the complexity of underlying processes and/or payoff functions valuation via numerical methods is often inevitable. The flexibility in terms of model assumptions often brings high time costs so that it can be useful to reduce the space on which the computation is executed in order to keep both the computation time and calculation error at acceptable levels. Efficient formulation of the boundary conditions of option valuation formula is one of such approaches. In this paper we focus on the impact of Dirichlet, Neumann and transparent boundary conditions when the valuation formula is discretized by the discontinuous Galerkin method combined with the implicit Euler scheme for the temporal discretization. The numerical results are presented using real data of DAX index options. (C) 2016, University of Nis. All rights reserved.
Název v anglickém jazyce
On the impact of various formulations of the boundary condition within numerical option valuation by DG method
Popis výsledku anglicky
Options, a crucial type of financial instrument, are very challenging as concerns both, the application and valuation. A key property of (exotic) options is to provide a tool to manage the market risk coming from everyday innovations at the market. Due to the complexity of underlying processes and/or payoff functions valuation via numerical methods is often inevitable. The flexibility in terms of model assumptions often brings high time costs so that it can be useful to reduce the space on which the computation is executed in order to keep both the computation time and calculation error at acceptable levels. Efficient formulation of the boundary conditions of option valuation formula is one of such approaches. In this paper we focus on the impact of Dirichlet, Neumann and transparent boundary conditions when the valuation formula is discretized by the discontinuous Galerkin method combined with the implicit Euler scheme for the temporal discretization. The numerical results are presented using real data of DAX index options. (C) 2016, University of Nis. All rights reserved.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BB - Aplikovaná statistika, operační výzkum
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA16-09541S" target="_blank" >GA16-09541S: Robustní numerická schémata pro oceňování vybraných opcí za různých tržních podmínek</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Filomat
ISSN
0354-5180
e-ISSN
—
Svazek periodika
30
Číslo periodika v rámci svazku
15
Stát vydavatele periodika
RS - Srbská republika
Počet stran výsledku
11
Strana od-do
4253-4263
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85010888062