Copulas and Credit Risk Models
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27510%2F18%3A10242071" target="_blank" >RIV/61989100:27510/18:10242071 - isvavai.cz</a>
Výsledek na webu
<a href="https://is.muni.cz/do/econ/sborniky/2018/Proceedings_finalni_verze_September_3.pdf" target="_blank" >https://is.muni.cz/do/econ/sborniky/2018/Proceedings_finalni_verze_September_3.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Copulas and Credit Risk Models
Popis výsledku v původním jazyce
The topic of this paper is copulas and credit risk models. Generally, there is a core implicit assumption of credit risk models that the critical variables are normally distributed, which is too simplified in the reality. There is no compelling reason for choosing the normal distribution. Therefore, the goal of this paper is to find out the real distributions based on the concept of copulas and then better quantify the credit risk. There is a portfolio that consists of ten bonds issued by quoted companies in the Frankfurt Stock Exchange (FSE) with a 10-million-euro total nominal value over one year, from January 9th, 2017 to January 8th, 2018. The credit risk of the portfolio is quantified under the framework of the CreditMetrics (TM) model, a typical industry example of the threshold models. Two main types of copulas include elliptical copulas and Archimedean copulas. The parameters of a parametric copula are estimated by MLE and then the copula is selected by computing AIC and BIC. Compared with the original CreditMetrics (TM) model with an assumption of normal distribution, the probability density curve obtained based on copulas are more right-tailed and the credit risk of the portfolio is better quantified.
Název v anglickém jazyce
Copulas and Credit Risk Models
Popis výsledku anglicky
The topic of this paper is copulas and credit risk models. Generally, there is a core implicit assumption of credit risk models that the critical variables are normally distributed, which is too simplified in the reality. There is no compelling reason for choosing the normal distribution. Therefore, the goal of this paper is to find out the real distributions based on the concept of copulas and then better quantify the credit risk. There is a portfolio that consists of ten bonds issued by quoted companies in the Frankfurt Stock Exchange (FSE) with a 10-million-euro total nominal value over one year, from January 9th, 2017 to January 8th, 2018. The credit risk of the portfolio is quantified under the framework of the CreditMetrics (TM) model, a typical industry example of the threshold models. Two main types of copulas include elliptical copulas and Archimedean copulas. The parameters of a parametric copula are estimated by MLE and then the copula is selected by computing AIC and BIC. Compared with the original CreditMetrics (TM) model with an assumption of normal distribution, the probability density curve obtained based on copulas are more right-tailed and the credit risk of the portfolio is better quantified.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
50206 - Finance
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
European Financial Systems 2018 : proceedings of the 15th international scientific conference : June 25-26, 2018, Brno, Czech Republic
ISBN
978-80-210-8980-8
ISSN
—
e-ISSN
—
Počet stran výsledku
8
Strana od-do
780-787
Název nakladatele
Masarykova univerzita
Místo vydání
Brno
Místo konání akce
Brno
Datum konání akce
25. 6. 2018
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
000462948800099