Fuzzy functional dependencies and linguistic interpretations employed in knowledge discovery tasks from relational databases
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27510%2F20%3A10244402" target="_blank" >RIV/61989100:27510/20:10244402 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0952197619303136" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0952197619303136</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.engappai.2019.103395" target="_blank" >10.1016/j.engappai.2019.103395</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Fuzzy functional dependencies and linguistic interpretations employed in knowledge discovery tasks from relational databases
Popis výsledku v původním jazyce
Knowledge discovery from databases copes with several problems including the heterogeneity of data and interpreting the solution in an understandable and convenient form for domain experts. Fuzzy logic approaches based on the computing with words paradigm are very appealing since they offer the possibility to express useful knowledge from a large volume of data by linguistic terms, which are easily understandable for diverse users. In this paper, the novel descriptive data mining algorithm based on fuzzy functional dependencies has been proposed. In the first step, data are fuzzified, which ensures the same manipulation of crisp and fuzzy data. The data mining step is based on revealing fuzzy functional dependencies among considered attributes. In the final step, the mined knowledge is interpreted linguistically by the fuzzy modifiers and quantifiers. The proposed algorithm has been explained on illustrative data and tested on real-world dataset. Finally, its benefits, weak points and possible future research topics are discussed.
Název v anglickém jazyce
Fuzzy functional dependencies and linguistic interpretations employed in knowledge discovery tasks from relational databases
Popis výsledku anglicky
Knowledge discovery from databases copes with several problems including the heterogeneity of data and interpreting the solution in an understandable and convenient form for domain experts. Fuzzy logic approaches based on the computing with words paradigm are very appealing since they offer the possibility to express useful knowledge from a large volume of data by linguistic terms, which are easily understandable for diverse users. In this paper, the novel descriptive data mining algorithm based on fuzzy functional dependencies has been proposed. In the first step, data are fuzzified, which ensures the same manipulation of crisp and fuzzy data. The data mining step is based on revealing fuzzy functional dependencies among considered attributes. In the final step, the mined knowledge is interpreted linguistically by the fuzzy modifiers and quantifiers. The proposed algorithm has been explained on illustrative data and tested on real-world dataset. Finally, its benefits, weak points and possible future research topics are discussed.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE
ISSN
0952-1976
e-ISSN
—
Svazek periodika
88
Číslo periodika v rámci svazku
February 2020
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
15
Strana od-do
103395
Kód UT WoS článku
000510523600019
EID výsledku v databázi Scopus
2-s2.0-85075551235