A Robust Cross-Efficiency Data Envelopment Analysis Model in the Presence of Undesirable Outputs
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27510%2F21%3A10245679" target="_blank" >RIV/61989100:27510/21:10245679 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0957417420308666" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0957417420308666</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.eswa.2020.114117" target="_blank" >10.1016/j.eswa.2020.114117</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A Robust Cross-Efficiency Data Envelopment Analysis Model in the Presence of Undesirable Outputs
Popis výsledku v původním jazyce
Degenerate optimal weights and uncertain data are two challenging problems in conventional data envelopment analysis (DEA). Cross-efficiency and robust optimization are commonly used to handle such problems. We develop two DEA adaptations to rank decision-making units (DMUs) characterized by uncertain data and undesirable outputs. The first adaptation is an interval approach, where we propose lower- and upper-bounds for the efficiency scores and apply a robust cross-efficiency model to avoid problems of non-unique optimal weights and uncertain data. We initially use the proposed interval approach and categorize DMUs into fully efficient, efficient, and inefficient groups. The second adaptation is a robust approach, where we rank the DMUs, with a measure of cross-efficiency that extends the traditional classification of efficient and inefficient units. Results show that we can obtain higher discriminatory power and higher-ranking stability compared with the interval models. We present an example from the literature and a real-world application in the banking industry to demonstrate this capability.
Název v anglickém jazyce
A Robust Cross-Efficiency Data Envelopment Analysis Model in the Presence of Undesirable Outputs
Popis výsledku anglicky
Degenerate optimal weights and uncertain data are two challenging problems in conventional data envelopment analysis (DEA). Cross-efficiency and robust optimization are commonly used to handle such problems. We develop two DEA adaptations to rank decision-making units (DMUs) characterized by uncertain data and undesirable outputs. The first adaptation is an interval approach, where we propose lower- and upper-bounds for the efficiency scores and apply a robust cross-efficiency model to avoid problems of non-unique optimal weights and uncertain data. We initially use the proposed interval approach and categorize DMUs into fully efficient, efficient, and inefficient groups. The second adaptation is a robust approach, where we rank the DMUs, with a measure of cross-efficiency that extends the traditional classification of efficient and inefficient units. Results show that we can obtain higher discriminatory power and higher-ranking stability compared with the interval models. We present an example from the literature and a real-world application in the banking industry to demonstrate this capability.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
50202 - Applied Economics, Econometrics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-13946S" target="_blank" >GA19-13946S: Hodnocení výkonnosti při výskytu neklasifikovaných faktorů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Expert Systems with Applications
ISSN
0957-4174
e-ISSN
—
Svazek periodika
167
Číslo periodika v rámci svazku
04/2021
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
16
Strana od-do
—
Kód UT WoS článku
000640531100007
EID výsledku v databázi Scopus
2-s2.0-85095985296