Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

An interval efficiency analysis with dual-role factors

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27510%2F21%3A10245680" target="_blank" >RIV/61989100:27510/21:10245680 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://link.springer.com/article/10.1007/s00291-020-00606-9" target="_blank" >https://link.springer.com/article/10.1007/s00291-020-00606-9</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00291-020-00606-9" target="_blank" >10.1007/s00291-020-00606-9</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    An interval efficiency analysis with dual-role factors

  • Popis výsledku v původním jazyce

    Data envelopment analysis (DEA) is a data-driven and benchmarking tool for evaluating the relative efficiency of production units with multiple outputs and inputs. Conventional DEA models are based on a production system by converting inputs to outputs using input-transformation-output processes. However, in some situations, it is inescapable to think of some assessment factors, referred to as dual-role factors, which can play simultaneously input and output roles in DEA. The observed data are often assumed to be precise although it needs to consider uncertainty as an inherent part of most real-world applications. Dealing with imprecise data is a perpetual challenge in DEA that can be treated by presenting the interval data. This paper develops an imprecise DEA approach with dual-role factors based on revised production possibility sets. The resulting models are a pair of mixed binary linear programming problems that yield the possible relative efficiencies in the form of intervals. In addition, a procedure is presented to assign the optimal designation to a dual-role factor and specify whether the dual-role factor is a nondiscretionary input or output. Given the interval efficiencies, the production units are categorized into the efficient and inefficient sets. Beyond the dichotomized classification, a practical ranking approach is also adopted to achieve incremental discrimination through evaluation analysis. Finally, an application to third-party reverse logistics providers is studied to illustrate the efficacy and applicability of the proposed approach.

  • Název v anglickém jazyce

    An interval efficiency analysis with dual-role factors

  • Popis výsledku anglicky

    Data envelopment analysis (DEA) is a data-driven and benchmarking tool for evaluating the relative efficiency of production units with multiple outputs and inputs. Conventional DEA models are based on a production system by converting inputs to outputs using input-transformation-output processes. However, in some situations, it is inescapable to think of some assessment factors, referred to as dual-role factors, which can play simultaneously input and output roles in DEA. The observed data are often assumed to be precise although it needs to consider uncertainty as an inherent part of most real-world applications. Dealing with imprecise data is a perpetual challenge in DEA that can be treated by presenting the interval data. This paper develops an imprecise DEA approach with dual-role factors based on revised production possibility sets. The resulting models are a pair of mixed binary linear programming problems that yield the possible relative efficiencies in the form of intervals. In addition, a procedure is presented to assign the optimal designation to a dual-role factor and specify whether the dual-role factor is a nondiscretionary input or output. Given the interval efficiencies, the production units are categorized into the efficient and inefficient sets. Beyond the dichotomized classification, a practical ranking approach is also adopted to achieve incremental discrimination through evaluation analysis. Finally, an application to third-party reverse logistics providers is studied to illustrate the efficacy and applicability of the proposed approach.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10102 - Applied mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA19-13946S" target="_blank" >GA19-13946S: Hodnocení výkonnosti při výskytu neklasifikovaných faktorů</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Operations-Research-Spektrum

  • ISSN

    0171-6468

  • e-ISSN

  • Svazek periodika

    43

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    33

  • Strana od-do

    255-287

  • Kód UT WoS článku

    000578104400001

  • EID výsledku v databázi Scopus

    2-s2.0-85092460481