Statistical/RBF NN framework for high frequency financial data
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27510%2F21%3A10249575" target="_blank" >RIV/61989100:27510/21:10249575 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.ekf.vsb.cz/smsis/en/proceedings/past-proceedings/" target="_blank" >https://www.ekf.vsb.cz/smsis/en/proceedings/past-proceedings/</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Statistical/RBF NN framework for high frequency financial data
Popis výsledku v původním jazyce
In this paper, we develop and consider the accuracy of forecasting models based on statistical (stochastic) methods and two intelligent methodology based on SVM approach and neural networks by using novel activation function based on the cloud concept with parameters chosen by a grid search. The use of both intelligent methods is useful because there is no knowledge about the relationship between the inputs into the system and its output. The proposed approaches are applied to predict the high frequency time series of the daily EUR/USD exchange rate time series and assess their prediction performance. We showed that intelligent learning methods have more accurate outputs than the statistical one. On the other hand, the statistical GARCH-class models can identify the presence of the leverage effect and to react to the good and bad news. (C) Proceedings of the 14th International Conference on Strategic Management and its Support by Information Systems 2021, SMSIS 2021.
Název v anglickém jazyce
Statistical/RBF NN framework for high frequency financial data
Popis výsledku anglicky
In this paper, we develop and consider the accuracy of forecasting models based on statistical (stochastic) methods and two intelligent methodology based on SVM approach and neural networks by using novel activation function based on the cloud concept with parameters chosen by a grid search. The use of both intelligent methods is useful because there is no knowledge about the relationship between the inputs into the system and its output. The proposed approaches are applied to predict the high frequency time series of the daily EUR/USD exchange rate time series and assess their prediction performance. We showed that intelligent learning methods have more accurate outputs than the statistical one. On the other hand, the statistical GARCH-class models can identify the presence of the leverage effect and to react to the good and bad news. (C) Proceedings of the 14th International Conference on Strategic Management and its Support by Information Systems 2021, SMSIS 2021.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10200 - Computer and information sciences
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 14th International Conference Strategic Management and its Support by Information Systems 2021: May 25-26, 2021, Ostrava, Czech Republic
ISBN
978-80-248-4521-0
ISSN
2570-5776
e-ISSN
—
Počet stran výsledku
10
Strana od-do
178-187
Název nakladatele
VŠB - Technical University of Ostrava
Místo vydání
Ostrava
Místo konání akce
Ostrava
Datum konání akce
25. 5. 2021
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
—