Portfolio Selection Using Multivariate Semiparametric Estimators and a Copula PCA-Based Approach
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27510%2F22%3A10247908" target="_blank" >RIV/61989100:27510/22:10247908 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007%2Fs10614-021-10167-w" target="_blank" >https://link.springer.com/article/10.1007%2Fs10614-021-10167-w</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10614-021-10167-w" target="_blank" >10.1007/s10614-021-10167-w</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Portfolio Selection Using Multivariate Semiparametric Estimators and a Copula PCA-Based Approach
Popis výsledku v původním jazyce
This paper investigates the implications for portfolio theory of using multivariate semiparametric estimators and a copula-based approach, especially when the number of risky assets becomes substantial. Parametric, nonparametric, and semiparametric regression methods are compared to approximate their returns in large-scale portfolio selection problems. Semiparametric regression models are used to prove that, under certain assumptions, the variability of the errors decreases as the number of factors increases. Moreover, a copula principal component analysis (PCA)-based approach is proposed, and its superiority to the classical Pearson PCA approach is demonstrated. Empirical analyses validate the suggested approaches and evaluate the impact of different approximation methods on portfolio selection problems. Here, the ex-ante sample paths of several portfolio strategies aiming to maximize portfolio wealth using either reward-risk or drawdown-based performance measures are compared. The results show that the proposed methodologies outperform the traditional approach for out-of-sample portfolios, especially when the dependence structure is represented by the Pearson linear correlation. (C) 2021, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Název v anglickém jazyce
Portfolio Selection Using Multivariate Semiparametric Estimators and a Copula PCA-Based Approach
Popis výsledku anglicky
This paper investigates the implications for portfolio theory of using multivariate semiparametric estimators and a copula-based approach, especially when the number of risky assets becomes substantial. Parametric, nonparametric, and semiparametric regression methods are compared to approximate their returns in large-scale portfolio selection problems. Semiparametric regression models are used to prove that, under certain assumptions, the variability of the errors decreases as the number of factors increases. Moreover, a copula principal component analysis (PCA)-based approach is proposed, and its superiority to the classical Pearson PCA approach is demonstrated. Empirical analyses validate the suggested approaches and evaluate the impact of different approximation methods on portfolio selection problems. Here, the ex-ante sample paths of several portfolio strategies aiming to maximize portfolio wealth using either reward-risk or drawdown-based performance measures are compared. The results show that the proposed methodologies outperform the traditional approach for out-of-sample portfolios, especially when the dependence structure is represented by the Pearson linear correlation. (C) 2021, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
50200 - Economics and Business
Návaznosti výsledku
Projekt
<a href="/cs/project/GA20-16764S" target="_blank" >GA20-16764S: Zobecněný přístup ke stochastické dominanci: teorie a finanční aplikace</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Computational Economics
ISSN
0927-7099
e-ISSN
—
Svazek periodika
60
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
27
Strana od-do
833-859
Kód UT WoS článku
000693705500002
EID výsledku v databázi Scopus
2-s2.0-85114314059