Perception of Fundamental Values and Financial Market Dynamics: Mathematical Insights from a 2D Piecewise Linear Map
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27510%2F22%3A10251399" target="_blank" >RIV/61989100:27510/22:10251399 - isvavai.cz</a>
Výsledek na webu
<a href="https://epubs.siam.org/doi/10.1137/21M1456339" target="_blank" >https://epubs.siam.org/doi/10.1137/21M1456339</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1137/21M1456339" target="_blank" >10.1137/21M1456339</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Perception of Fundamental Values and Financial Market Dynamics: Mathematical Insights from a 2D Piecewise Linear Map
Popis výsledku v původním jazyce
We develop a simple financial market model in which a market maker adjusts the price with respect to orders placed by chartists and fundamentalists. A novel feature of our model is that fundamentalists optimistically (pessimistically) believe in a relatively high (low) fundamental value when the financial market is increasing (decreasing). As it turns out, the dynamics of our model is driven by a two-dimensional discontinuous piecewise linear map for which we provide an in-depth analytical and numerical investigation. Among other things, we obtain in explicit form the boundaries of the periodicity regions associated with attracting cycles with rotation number 1/n, n geq 3. These boundaries correspond to border collision bifurcations of the related cycles. We show that the periodicity regions are organized in a specific period adding structure, and some of the regions may overlap. Several examples of coexisting cycles and their basins of attraction are also presented. Economically, our results offer a new explanation for the boom-bust behavior of actual financial markets. (C) 2022 Society for Industrial and Applied Mathematics.
Název v anglickém jazyce
Perception of Fundamental Values and Financial Market Dynamics: Mathematical Insights from a 2D Piecewise Linear Map
Popis výsledku anglicky
We develop a simple financial market model in which a market maker adjusts the price with respect to orders placed by chartists and fundamentalists. A novel feature of our model is that fundamentalists optimistically (pessimistically) believe in a relatively high (low) fundamental value when the financial market is increasing (decreasing). As it turns out, the dynamics of our model is driven by a two-dimensional discontinuous piecewise linear map for which we provide an in-depth analytical and numerical investigation. Among other things, we obtain in explicit form the boundaries of the periodicity regions associated with attracting cycles with rotation number 1/n, n geq 3. These boundaries correspond to border collision bifurcations of the related cycles. We show that the periodicity regions are organized in a specific period adding structure, and some of the regions may overlap. Several examples of coexisting cycles and their basins of attraction are also presented. Economically, our results offer a new explanation for the boom-bust behavior of actual financial markets. (C) 2022 Society for Industrial and Applied Mathematics.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
50200 - Economics and Business
Návaznosti výsledku
Projekt
<a href="/cs/project/GJ20-25660Y" target="_blank" >GJ20-25660Y: Modelování kreditního a systémového rizika v sektoru neživotního pojištění</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
SIAM Journal on Applied Dynamical Systems
ISSN
1536-0040
e-ISSN
—
Svazek periodika
21
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
24
Strana od-do
2314-2337
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85146372621