Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

A 2D piecewise-linear discontinuous map arising in stock market modeling: Two overlapping period-adding bifurcation structures

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27510%2F23%3A10253042" target="_blank" >RIV/61989100:27510/23:10253042 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S0960077923010445?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0960077923010445?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.chaos.2023.114143" target="_blank" >10.1016/j.chaos.2023.114143</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    A 2D piecewise-linear discontinuous map arising in stock market modeling: Two overlapping period-adding bifurcation structures

  • Popis výsledku v původním jazyce

    We consider a 2D piecewise-linear discontinuous map defined on three partitions that drives the dynamics of a stock market model. This model is a modification of our previous model associated with a map defined on two partitions. In the present paper, we add more realistic assumptions with respect to the behavior of sentiment traders. Sentiment traders optimistically buy (pessimistically sell) a certain amount of stocks when the stock market is sufficiently rising (falling); otherwise they are inactive. As a result, the action of the price adjustment is represented by a map defined by three different functions, on three different partitions. This leads, in particular, to families of attracting cycles which are new with respect to those associated with a map defined on two partitions. We illustrate how to detect analytically the periodicity regions of these cycles considering the simplest cases of rotation number 1/n, nGREATER-THAN OR EQUAL TO3, and obtaining in explicit form the bifurcation boundaries of the corresponding regions. We show that in the parameter space, these regions form two different overlapping period-adding structures that issue from the center bifurcation line. In particular, each point of this line, associated with a rational rotation number, is an issue point for two different periodicity regions related to attracting cycles with the same rotation number but with different symbolic sequences. Since these regions overlap with each other and with the domain of a locally stable fixed point, a characteristic feature of the map is multistability, which we describe by considering the corresponding basins of attraction. Our results contribute to the development of the bifurcation theory for discontinuous maps, as well as to the understanding of the excessively volatile boom-bust nature of stock markets. (C) 2023 The Author(s)

  • Název v anglickém jazyce

    A 2D piecewise-linear discontinuous map arising in stock market modeling: Two overlapping period-adding bifurcation structures

  • Popis výsledku anglicky

    We consider a 2D piecewise-linear discontinuous map defined on three partitions that drives the dynamics of a stock market model. This model is a modification of our previous model associated with a map defined on two partitions. In the present paper, we add more realistic assumptions with respect to the behavior of sentiment traders. Sentiment traders optimistically buy (pessimistically sell) a certain amount of stocks when the stock market is sufficiently rising (falling); otherwise they are inactive. As a result, the action of the price adjustment is represented by a map defined by three different functions, on three different partitions. This leads, in particular, to families of attracting cycles which are new with respect to those associated with a map defined on two partitions. We illustrate how to detect analytically the periodicity regions of these cycles considering the simplest cases of rotation number 1/n, nGREATER-THAN OR EQUAL TO3, and obtaining in explicit form the bifurcation boundaries of the corresponding regions. We show that in the parameter space, these regions form two different overlapping period-adding structures that issue from the center bifurcation line. In particular, each point of this line, associated with a rational rotation number, is an issue point for two different periodicity regions related to attracting cycles with the same rotation number but with different symbolic sequences. Since these regions overlap with each other and with the domain of a locally stable fixed point, a characteristic feature of the map is multistability, which we describe by considering the corresponding basins of attraction. Our results contribute to the development of the bifurcation theory for discontinuous maps, as well as to the understanding of the excessively volatile boom-bust nature of stock markets. (C) 2023 The Author(s)

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    50200 - Economics and Business

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA23-06282S" target="_blank" >GA23-06282S: Evoluční ekonomická dynamika s konečnou populací: Modelování a aplikace</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Chaos, Solitons &amp; Fractals

  • ISSN

    0960-0779

  • e-ISSN

    1873-2887

  • Svazek periodika

    176

  • Číslo periodika v rámci svazku

    November

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    14

  • Strana od-do

    114143

  • Kód UT WoS článku

    001097669600001

  • EID výsledku v databázi Scopus

    2-s2.0-85173619620