Bifurcation structures of a two-dimensional piecewise linear discontinuous map: analysis of a cobweb model with regime-switching expectations
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27510%2F24%3A10254872" target="_blank" >RIV/61989100:27510/24:10254872 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s11071-024-09545-4" target="_blank" >https://link.springer.com/article/10.1007/s11071-024-09545-4</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11071-024-09545-4" target="_blank" >10.1007/s11071-024-09545-4</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Bifurcation structures of a two-dimensional piecewise linear discontinuous map: analysis of a cobweb model with regime-switching expectations
Popis výsledku v původním jazyce
We consider the bifurcations occurring in a two-dimensional piecewise-linear discontinuous map that describes the dynamics of a cobweb model in which firms rely on a regime-switching expectation rule. In three different partitions of the phase plane, separated by two discontinuity lines, the map is defined by linear functions with the same Jacobian matrix, having two real eigenvalues, one of which is negative and one equal to 0. This leads to asymptotic dynamics that can belong to two or three critical lines. We show that when the basic fixed point is attracting, it may coexist with at most three attracting cycles. We have determined their existence regions, in the two-dimensional parameter plane, bounded by border collision bifurcation curves. At parameter values for which the basic fixed point is repelling, chaotic attractors may exist - either one that is symmetric with respect to the basic fixed point, or, if not symmetric, the symmetric one also exists. The homoclinic bifurcations of repelling cycles leading to the merging of chaotic attractors are commented by using the first return map on a suitable line. Moreover, four different kinds of homoclinic bifurcations of a saddle 2-cycle, leading to divergence of the generic trajectory, are determined.
Název v anglickém jazyce
Bifurcation structures of a two-dimensional piecewise linear discontinuous map: analysis of a cobweb model with regime-switching expectations
Popis výsledku anglicky
We consider the bifurcations occurring in a two-dimensional piecewise-linear discontinuous map that describes the dynamics of a cobweb model in which firms rely on a regime-switching expectation rule. In three different partitions of the phase plane, separated by two discontinuity lines, the map is defined by linear functions with the same Jacobian matrix, having two real eigenvalues, one of which is negative and one equal to 0. This leads to asymptotic dynamics that can belong to two or three critical lines. We show that when the basic fixed point is attracting, it may coexist with at most three attracting cycles. We have determined their existence regions, in the two-dimensional parameter plane, bounded by border collision bifurcation curves. At parameter values for which the basic fixed point is repelling, chaotic attractors may exist - either one that is symmetric with respect to the basic fixed point, or, if not symmetric, the symmetric one also exists. The homoclinic bifurcations of repelling cycles leading to the merging of chaotic attractors are commented by using the first return map on a suitable line. Moreover, four different kinds of homoclinic bifurcations of a saddle 2-cycle, leading to divergence of the generic trajectory, are determined.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
50202 - Applied Economics, Econometrics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA23-06282S" target="_blank" >GA23-06282S: Evoluční ekonomická dynamika s konečnou populací: Modelování a aplikace</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Nonlinear Dynamics
ISSN
0924-090X
e-ISSN
1573-269X
Svazek periodika
112
Číslo periodika v rámci svazku
17
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
20
Strana od-do
15601-15620
Kód UT WoS článku
001209544100003
EID výsledku v databázi Scopus
2-s2.0-85191777611