Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

An extended proximity relation and quantified aggregation for designing robust fuzzy query engine

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27510%2F24%3A10254931" target="_blank" >RIV/61989100:27510/24:10254931 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S0950705124002090" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0950705124002090</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.knosys.2024.111574" target="_blank" >10.1016/j.knosys.2024.111574</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    An extended proximity relation and quantified aggregation for designing robust fuzzy query engine

  • Popis výsledku v původním jazyce

    In this article, we propose a novel model of a robust fuzzy query engine that addresses vagueness in data and users&apos; requirements. It aims to assist users in recommending similar products or services by retrieving the most suitable entities when the limitations of queries and recommendation approaches are recognized. The proposed fuzzy engine model considers various complex aspects, including imprecise preferences explained by linguistic terms, uncertain data in datasets, connections among elementary requirements, and the lack of historical data necessary for personalized recommendations. To achieve this goal, we propose a similarity matching based on the extended proximity relation and an adapted conformance measure for elementary requirements. In this direction, a new monotonicity property for proximity relation is introduced to ensure consistency in similarities among ordinal categorical data (including binary data) expressed by crisp or fuzzy numbers. Therefore, the conformance measure used to evaluate the similarity between user requirements and attribute values is expressed as a fuzzy number. Next, we propose a quantified aggregation of elementary requirements by strictly monotone fuzzy relative quantifiers. The flexibility is further extended by a convex combination of possibility and necessity measures. A hotel selection experiment is being carried out to explore the potential of the proposed fuzzy query engine. Finally, the limitations and usefulness of the proposed approach are addressed.

  • Název v anglickém jazyce

    An extended proximity relation and quantified aggregation for designing robust fuzzy query engine

  • Popis výsledku anglicky

    In this article, we propose a novel model of a robust fuzzy query engine that addresses vagueness in data and users&apos; requirements. It aims to assist users in recommending similar products or services by retrieving the most suitable entities when the limitations of queries and recommendation approaches are recognized. The proposed fuzzy engine model considers various complex aspects, including imprecise preferences explained by linguistic terms, uncertain data in datasets, connections among elementary requirements, and the lack of historical data necessary for personalized recommendations. To achieve this goal, we propose a similarity matching based on the extended proximity relation and an adapted conformance measure for elementary requirements. In this direction, a new monotonicity property for proximity relation is introduced to ensure consistency in similarities among ordinal categorical data (including binary data) expressed by crisp or fuzzy numbers. Therefore, the conformance measure used to evaluate the similarity between user requirements and attribute values is expressed as a fuzzy number. Next, we propose a quantified aggregation of elementary requirements by strictly monotone fuzzy relative quantifiers. The flexibility is further extended by a convex combination of possibility and necessity measures. A hotel selection experiment is being carried out to explore the potential of the proposed fuzzy query engine. Finally, the limitations and usefulness of the proposed approach are addressed.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10200 - Computer and information sciences

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Knowledge-Based Systems

  • ISSN

    0950-7051

  • e-ISSN

    1872-7409

  • Svazek periodika

    290

  • Číslo periodika v rámci svazku

    April 2024

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    12

  • Strana od-do

    111574

  • Kód UT WoS článku

    001221709900001

  • EID výsledku v databázi Scopus

    2-s2.0-85186384332