An extended proximity relation and quantified aggregation for designing robust fuzzy query engine
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27510%2F24%3A10254931" target="_blank" >RIV/61989100:27510/24:10254931 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0950705124002090" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0950705124002090</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.knosys.2024.111574" target="_blank" >10.1016/j.knosys.2024.111574</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
An extended proximity relation and quantified aggregation for designing robust fuzzy query engine
Popis výsledku v původním jazyce
In this article, we propose a novel model of a robust fuzzy query engine that addresses vagueness in data and users' requirements. It aims to assist users in recommending similar products or services by retrieving the most suitable entities when the limitations of queries and recommendation approaches are recognized. The proposed fuzzy engine model considers various complex aspects, including imprecise preferences explained by linguistic terms, uncertain data in datasets, connections among elementary requirements, and the lack of historical data necessary for personalized recommendations. To achieve this goal, we propose a similarity matching based on the extended proximity relation and an adapted conformance measure for elementary requirements. In this direction, a new monotonicity property for proximity relation is introduced to ensure consistency in similarities among ordinal categorical data (including binary data) expressed by crisp or fuzzy numbers. Therefore, the conformance measure used to evaluate the similarity between user requirements and attribute values is expressed as a fuzzy number. Next, we propose a quantified aggregation of elementary requirements by strictly monotone fuzzy relative quantifiers. The flexibility is further extended by a convex combination of possibility and necessity measures. A hotel selection experiment is being carried out to explore the potential of the proposed fuzzy query engine. Finally, the limitations and usefulness of the proposed approach are addressed.
Název v anglickém jazyce
An extended proximity relation and quantified aggregation for designing robust fuzzy query engine
Popis výsledku anglicky
In this article, we propose a novel model of a robust fuzzy query engine that addresses vagueness in data and users' requirements. It aims to assist users in recommending similar products or services by retrieving the most suitable entities when the limitations of queries and recommendation approaches are recognized. The proposed fuzzy engine model considers various complex aspects, including imprecise preferences explained by linguistic terms, uncertain data in datasets, connections among elementary requirements, and the lack of historical data necessary for personalized recommendations. To achieve this goal, we propose a similarity matching based on the extended proximity relation and an adapted conformance measure for elementary requirements. In this direction, a new monotonicity property for proximity relation is introduced to ensure consistency in similarities among ordinal categorical data (including binary data) expressed by crisp or fuzzy numbers. Therefore, the conformance measure used to evaluate the similarity between user requirements and attribute values is expressed as a fuzzy number. Next, we propose a quantified aggregation of elementary requirements by strictly monotone fuzzy relative quantifiers. The flexibility is further extended by a convex combination of possibility and necessity measures. A hotel selection experiment is being carried out to explore the potential of the proposed fuzzy query engine. Finally, the limitations and usefulness of the proposed approach are addressed.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10200 - Computer and information sciences
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Knowledge-Based Systems
ISSN
0950-7051
e-ISSN
1872-7409
Svazek periodika
290
Číslo periodika v rámci svazku
April 2024
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
12
Strana od-do
111574
Kód UT WoS článku
001221709900001
EID výsledku v databázi Scopus
2-s2.0-85186384332