Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Child Labor, Informality, and Poverty: Leveraging Logistic Regression, Indeterminate Likert Scales, and Similarity Measures for Insightful Analysis in Ecuador

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27510%2F24%3A10255657" target="_blank" >RIV/61989100:27510/24:10255657 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://digitalrepository.unm.edu/nss_journal/vol66/iss1/9/" target="_blank" >https://digitalrepository.unm.edu/nss_journal/vol66/iss1/9/</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.5281/zenodo.10937521" target="_blank" >10.5281/zenodo.10937521</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Child Labor, Informality, and Poverty: Leveraging Logistic Regression, Indeterminate Likert Scales, and Similarity Measures for Insightful Analysis in Ecuador

  • Popis výsledku v původním jazyce

    The paper presents a comprehensive analysis of child labor in Ecuador, employing advanced statistical tools like logistic regression, neutrosophic Likert scales, and similarity measures to deepen the understanding of this social issue. The integration of these methodologies allows for a nuanced assessment of the various socio-economic factors contributing to child labor. By capturing the uncertainty in human responses, the research highlights the complex interplay between poverty, household income, education levels, and labor types on the incidence of child labor. Key findings suggest that rural location, the age of the child, and the informal nature of the head of the household&apos;s work are the most significant predictors of child labor. Notably, parental education appears to have a less direct influence. Despite various efforts, including government monetary transfers through programs like the BDH, child labor persists, indicating the need for more targeted interventions.The paper proposes future research to extend these models to a broader demographic and geographic data set, emphasizing the potential for these methods to be applied to a variety of social issues. The development of computational tools to automate neutrosophic analysis could greatly benefit large-scale studies, potentially aiding policymakers in designing more effective interventions for vulnerable populations. (C) (2024) All rights reserved.

  • Název v anglickém jazyce

    Child Labor, Informality, and Poverty: Leveraging Logistic Regression, Indeterminate Likert Scales, and Similarity Measures for Insightful Analysis in Ecuador

  • Popis výsledku anglicky

    The paper presents a comprehensive analysis of child labor in Ecuador, employing advanced statistical tools like logistic regression, neutrosophic Likert scales, and similarity measures to deepen the understanding of this social issue. The integration of these methodologies allows for a nuanced assessment of the various socio-economic factors contributing to child labor. By capturing the uncertainty in human responses, the research highlights the complex interplay between poverty, household income, education levels, and labor types on the incidence of child labor. Key findings suggest that rural location, the age of the child, and the informal nature of the head of the household&apos;s work are the most significant predictors of child labor. Notably, parental education appears to have a less direct influence. Despite various efforts, including government monetary transfers through programs like the BDH, child labor persists, indicating the need for more targeted interventions.The paper proposes future research to extend these models to a broader demographic and geographic data set, emphasizing the potential for these methods to be applied to a variety of social issues. The development of computational tools to automate neutrosophic analysis could greatly benefit large-scale studies, potentially aiding policymakers in designing more effective interventions for vulnerable populations. (C) (2024) All rights reserved.

Klasifikace

  • Druh

    J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS

  • CEP obor

  • OECD FORD obor

    10103 - Statistics and probability

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Neutrosophic Sets and Systems

  • ISSN

    2331-6055

  • e-ISSN

    2331-608X

  • Svazek periodika

    66

  • Číslo periodika v rámci svazku

    January

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    10

  • Strana od-do

    136-145

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus

    2-s2.0-85195495788