Child Labor, Informality, and Poverty: Leveraging Logistic Regression, Indeterminate Likert Scales, and Similarity Measures for Insightful Analysis in Ecuador
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27510%2F24%3A10255657" target="_blank" >RIV/61989100:27510/24:10255657 - isvavai.cz</a>
Výsledek na webu
<a href="https://digitalrepository.unm.edu/nss_journal/vol66/iss1/9/" target="_blank" >https://digitalrepository.unm.edu/nss_journal/vol66/iss1/9/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.5281/zenodo.10937521" target="_blank" >10.5281/zenodo.10937521</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Child Labor, Informality, and Poverty: Leveraging Logistic Regression, Indeterminate Likert Scales, and Similarity Measures for Insightful Analysis in Ecuador
Popis výsledku v původním jazyce
The paper presents a comprehensive analysis of child labor in Ecuador, employing advanced statistical tools like logistic regression, neutrosophic Likert scales, and similarity measures to deepen the understanding of this social issue. The integration of these methodologies allows for a nuanced assessment of the various socio-economic factors contributing to child labor. By capturing the uncertainty in human responses, the research highlights the complex interplay between poverty, household income, education levels, and labor types on the incidence of child labor. Key findings suggest that rural location, the age of the child, and the informal nature of the head of the household's work are the most significant predictors of child labor. Notably, parental education appears to have a less direct influence. Despite various efforts, including government monetary transfers through programs like the BDH, child labor persists, indicating the need for more targeted interventions.The paper proposes future research to extend these models to a broader demographic and geographic data set, emphasizing the potential for these methods to be applied to a variety of social issues. The development of computational tools to automate neutrosophic analysis could greatly benefit large-scale studies, potentially aiding policymakers in designing more effective interventions for vulnerable populations. (C) (2024) All rights reserved.
Název v anglickém jazyce
Child Labor, Informality, and Poverty: Leveraging Logistic Regression, Indeterminate Likert Scales, and Similarity Measures for Insightful Analysis in Ecuador
Popis výsledku anglicky
The paper presents a comprehensive analysis of child labor in Ecuador, employing advanced statistical tools like logistic regression, neutrosophic Likert scales, and similarity measures to deepen the understanding of this social issue. The integration of these methodologies allows for a nuanced assessment of the various socio-economic factors contributing to child labor. By capturing the uncertainty in human responses, the research highlights the complex interplay between poverty, household income, education levels, and labor types on the incidence of child labor. Key findings suggest that rural location, the age of the child, and the informal nature of the head of the household's work are the most significant predictors of child labor. Notably, parental education appears to have a less direct influence. Despite various efforts, including government monetary transfers through programs like the BDH, child labor persists, indicating the need for more targeted interventions.The paper proposes future research to extend these models to a broader demographic and geographic data set, emphasizing the potential for these methods to be applied to a variety of social issues. The development of computational tools to automate neutrosophic analysis could greatly benefit large-scale studies, potentially aiding policymakers in designing more effective interventions for vulnerable populations. (C) (2024) All rights reserved.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Neutrosophic Sets and Systems
ISSN
2331-6055
e-ISSN
2331-608X
Svazek periodika
66
Číslo periodika v rámci svazku
January
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
10
Strana od-do
136-145
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85195495788