Aquatic toxicity assessment of the airborne brake wear debris and binders of friction composites (phenolic resins)
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27640%2F17%3A10237736" target="_blank" >RIV/61989100:27640/17:10237736 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27740/17:10237736
Výsledek na webu
<a href="https://www.nanocon.eu/files/uploads/01/NANOCON2016_conference_proceedings_content.pdf" target="_blank" >https://www.nanocon.eu/files/uploads/01/NANOCON2016_conference_proceedings_content.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Aquatic toxicity assessment of the airborne brake wear debris and binders of friction composites (phenolic resins)
Popis výsledku v původním jazyce
Pollution associated to road traffic and its combustion processes are considerably discussed in recent years. Nowadays, attention is also paid to the non-combustion processes, such as braking. During braking nonairborne and airborne fraction is released into the environment. Manufacturers try to use materials with low environmental risks, but during braking new compounds can be created, due to the high temperatures and pressures. Both fractions as well contain considerable amounts of nano-sized particles which may consequently enter the water environment and may pose risk to the living organisms. However, there are no standardized and unified procedures which could be used for the brake wear debris toxicity assessment. Aim of the study was the evaluation of the acute aquatic toxicity of the airborne brake wear debris and the most commonly used binders (phenolic resins) in the friction composites for brake linings. Brake wear debris from low-metallic brake pads was collected after standard dynamometer test from pocket filter and characterized by Raman microspectroscopy and scanning electron microscopy. Phenolic resin as binder is material with the highest volume in the formulation of the friction composite and contains Hexamethylenetetramine (HMTA) which can be decomposed at the ammonia and formaldehyde in high temperatures. Three commercially available phenolic resins were tested in the initial state and as well after thermal treatment (160 °C), which simulate process of manufacturing. Scanning electron microscopy and Fourier-transform infrared spectroscopy were used for characterization of phenolic resins. EC50 toxicity parameter for freshwater green algae detection organism Raphidocelis subcapitata was evaluated for all tested materials.
Název v anglickém jazyce
Aquatic toxicity assessment of the airborne brake wear debris and binders of friction composites (phenolic resins)
Popis výsledku anglicky
Pollution associated to road traffic and its combustion processes are considerably discussed in recent years. Nowadays, attention is also paid to the non-combustion processes, such as braking. During braking nonairborne and airborne fraction is released into the environment. Manufacturers try to use materials with low environmental risks, but during braking new compounds can be created, due to the high temperatures and pressures. Both fractions as well contain considerable amounts of nano-sized particles which may consequently enter the water environment and may pose risk to the living organisms. However, there are no standardized and unified procedures which could be used for the brake wear debris toxicity assessment. Aim of the study was the evaluation of the acute aquatic toxicity of the airborne brake wear debris and the most commonly used binders (phenolic resins) in the friction composites for brake linings. Brake wear debris from low-metallic brake pads was collected after standard dynamometer test from pocket filter and characterized by Raman microspectroscopy and scanning electron microscopy. Phenolic resin as binder is material with the highest volume in the formulation of the friction composite and contains Hexamethylenetetramine (HMTA) which can be decomposed at the ammonia and formaldehyde in high temperatures. Three commercially available phenolic resins were tested in the initial state and as well after thermal treatment (160 °C), which simulate process of manufacturing. Scanning electron microscopy and Fourier-transform infrared spectroscopy were used for characterization of phenolic resins. EC50 toxicity parameter for freshwater green algae detection organism Raphidocelis subcapitata was evaluated for all tested materials.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
21001 - Nano-materials (production and properties)
Návaznosti výsledku
Projekt
<a href="/cs/project/LQ1602" target="_blank" >LQ1602: IT4Innovations excellence in science</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
NANOCON 2016 : conference proceedings : October 19-21, 2016, Brno, Česko
ISBN
978-80-87294-71-0
ISSN
—
e-ISSN
neuvedeno
Počet stran výsledku
6
Strana od-do
600-606
Název nakladatele
Tanger
Místo vydání
Ostrava
Místo konání akce
Brno
Datum konání akce
19. 10. 2016
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000410656100105