Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Phonon-mediated stabilization and softening of 2D transition metal carbides: case studies of Ti2CO2 and Mo2CO2

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27640%2F18%3A10240013" target="_blank" >RIV/61989100:27640/18:10240013 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/61989100:27740/18:10240013

  • Výsledek na webu

    <a href="https://pubs.rsc.org/en/content/articlelanding/2018/cp/c8cp00752g#!divAbstract" target="_blank" >https://pubs.rsc.org/en/content/articlelanding/2018/cp/c8cp00752g#!divAbstract</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1039/c8cp00752g" target="_blank" >10.1039/c8cp00752g</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Phonon-mediated stabilization and softening of 2D transition metal carbides: case studies of Ti2CO2 and Mo2CO2

  • Popis výsledku v původním jazyce

    Two-dimensional transition metal carbides (MXenes) exhibit excellent thermodynamic stability, mechanical strength and flexibility, which make them promising candidates in flexible devices and reinforcements in nanocomposites. However, the dynamic stability may intrinsically determine the preferred adsorption sites of functional groups in MXenes and lead to premature failure under finite strain before approaching the elastic limits. It is found interestingly that different adsorption sites of the functional groups correspond to the different phonon stabilities and adsorption energies of MXenes, which can be attributed to different hybridization characteristics between the metal-d and O-p(z) states and delocalized electron behaviors around the metal atoms. Although both Ti2CO2 and Mo2CO2 possess high ideal strengths and superior flexibility, the premature phonon instabilities appear unexpectedly in distinct manners before approaching their elastic limits. An in-depth exploration of the soft modes and deformed electronic structures reveals that a continuously decreasing gap-opening at the point in Ti2CO2 increases after in-plane phonon instability due to the pseudo Jahn-Teller effect, differing from the out-of-plane phonon instability and semiconductor-metal transition under biaxial tension observed in MoS2. Although Mo2CO2 shows similar failure modes to graphene under uniaxial/biaxial tensions, the band crossings around the Fermi level are found to be responsible for its metallic character and elastic/phonon instabilities by modifying the elastic energy or electronic band energy, different from the gap opening appearing in graphene. Our results shed light onto the profound effect of the phonon instability on the preferable structure and strengths of MXenes, providing theoretical guidance on designing flexible MXene devices, raising a great challenge to the conventional strengthening theory by simply counting bonds.

  • Název v anglickém jazyce

    Phonon-mediated stabilization and softening of 2D transition metal carbides: case studies of Ti2CO2 and Mo2CO2

  • Popis výsledku anglicky

    Two-dimensional transition metal carbides (MXenes) exhibit excellent thermodynamic stability, mechanical strength and flexibility, which make them promising candidates in flexible devices and reinforcements in nanocomposites. However, the dynamic stability may intrinsically determine the preferred adsorption sites of functional groups in MXenes and lead to premature failure under finite strain before approaching the elastic limits. It is found interestingly that different adsorption sites of the functional groups correspond to the different phonon stabilities and adsorption energies of MXenes, which can be attributed to different hybridization characteristics between the metal-d and O-p(z) states and delocalized electron behaviors around the metal atoms. Although both Ti2CO2 and Mo2CO2 possess high ideal strengths and superior flexibility, the premature phonon instabilities appear unexpectedly in distinct manners before approaching their elastic limits. An in-depth exploration of the soft modes and deformed electronic structures reveals that a continuously decreasing gap-opening at the point in Ti2CO2 increases after in-plane phonon instability due to the pseudo Jahn-Teller effect, differing from the out-of-plane phonon instability and semiconductor-metal transition under biaxial tension observed in MoS2. Although Mo2CO2 shows similar failure modes to graphene under uniaxial/biaxial tensions, the band crossings around the Fermi level are found to be responsible for its metallic character and elastic/phonon instabilities by modifying the elastic energy or electronic band energy, different from the gap opening appearing in graphene. Our results shed light onto the profound effect of the phonon instability on the preferable structure and strengths of MXenes, providing theoretical guidance on designing flexible MXene devices, raising a great challenge to the conventional strengthening theory by simply counting bonds.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10302 - Condensed matter physics (including formerly solid state physics, supercond.)

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Physical Chemistry Chemical Physics

  • ISSN

    1463-9076

  • e-ISSN

  • Svazek periodika

    20

  • Číslo periodika v rámci svazku

    21

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    11

  • Strana od-do

    14608-14618

  • Kód UT WoS článku

    000434246300031

  • EID výsledku v databázi Scopus