Electronic nature transition and magnetism creation in vacancy defected Ti2CO2 MXene under biaxial strain: DFTB+U study
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F22%3AN2302GWT" target="_blank" >RIV/61988987:17310/22:N2302GWT - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1021/acsomega.2c05037" target="_blank" >http://dx.doi.org/10.1021/acsomega.2c05037</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acsomega.2c05037" target="_blank" >10.1021/acsomega.2c05037</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Electronic nature transition and magnetism creation in vacancy defected Ti2CO2 MXene under biaxial strain: DFTB+U study
Popis výsledku v původním jazyce
The structural, electronic, and magnetic properties of vacancy defect in Ti2CO2 MXene and the effect of strain have been investigated using the density functional tight-binding (DFTB) approach including spin-polarization with Hubbard onsite correction (DFTB + U). The band gap of pure Ti2CO2 is ∼1.3 eV, which decreases to ∼0.4 and ∼1.1 eV in the case of C- and O-vacancies, respectively, i.e., the semiconducting behavior is retained. In contrast, Ti2CO2 undergoes semiconductor-to-metal transition by the introduction of a single Ti-vacancy. This transition is the result of introduced localized states in the vicinity of the Fermi level by the vacancy. Both Ti- and O-vacancies have zero net magnetic moments. Interestingly, the nonmagnetic (NM) ground state of semiconducting Ti2CO2 turns into a magnetic semiconductor by introducing a C-vacancy with a magnetization of ∼2 μB/cell. Furthermore, we studied the effect of strain on the electronic structure and magnetic properties of Ti-, C-, and O-vacant Ti2CO2. The nature of the band gap in the presence of single O-vacancy remains indirect in both compression and tensile strain, and the size of the band gap decreases. Compression strain on Ti-vacant Ti2CO2 changes metal into a direct semiconductor, and the metallic character remains under tensile biaxial strain. In opposition, a semiconductor-to-metal transition occurs by applying a compressive biaxial strain on C-vacant Ti2CO2. We also find that the magnetism is preserved under tensile strain and suppressed under compression strain on VC-Ti2CO2. Moreover, we show that double C-vacancies maintain magnetism. Our findings provide important characteristics for the application of the most frequent MXene material and should motivate further investigations because experimentally achieved MXenes always contain point defects.
Název v anglickém jazyce
Electronic nature transition and magnetism creation in vacancy defected Ti2CO2 MXene under biaxial strain: DFTB+U study
Popis výsledku anglicky
The structural, electronic, and magnetic properties of vacancy defect in Ti2CO2 MXene and the effect of strain have been investigated using the density functional tight-binding (DFTB) approach including spin-polarization with Hubbard onsite correction (DFTB + U). The band gap of pure Ti2CO2 is ∼1.3 eV, which decreases to ∼0.4 and ∼1.1 eV in the case of C- and O-vacancies, respectively, i.e., the semiconducting behavior is retained. In contrast, Ti2CO2 undergoes semiconductor-to-metal transition by the introduction of a single Ti-vacancy. This transition is the result of introduced localized states in the vicinity of the Fermi level by the vacancy. Both Ti- and O-vacancies have zero net magnetic moments. Interestingly, the nonmagnetic (NM) ground state of semiconducting Ti2CO2 turns into a magnetic semiconductor by introducing a C-vacancy with a magnetization of ∼2 μB/cell. Furthermore, we studied the effect of strain on the electronic structure and magnetic properties of Ti-, C-, and O-vacant Ti2CO2. The nature of the band gap in the presence of single O-vacancy remains indirect in both compression and tensile strain, and the size of the band gap decreases. Compression strain on Ti-vacant Ti2CO2 changes metal into a direct semiconductor, and the metallic character remains under tensile biaxial strain. In opposition, a semiconductor-to-metal transition occurs by applying a compressive biaxial strain on C-vacant Ti2CO2. We also find that the magnetism is preserved under tensile strain and suppressed under compression strain on VC-Ti2CO2. Moreover, we show that double C-vacancies maintain magnetism. Our findings provide important characteristics for the application of the most frequent MXene material and should motivate further investigations because experimentally achieved MXenes always contain point defects.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA21-28709S" target="_blank" >GA21-28709S: MXeny – materiály pro technologické aplikace budoucí generace</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ACS Omega
ISSN
2470-1343
e-ISSN
2470-1343
Svazek periodika
—
Číslo periodika v rámci svazku
46
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
12
Strana od-do
42221-42232
Kód UT WoS článku
000885515100001
EID výsledku v databázi Scopus
2-s2.0-85141981142