Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Electronic nature transition and magnetism creation in vacancy defected Ti2CO2 MXene under biaxial strain: DFTB+U study

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F22%3AA2302GWT" target="_blank" >RIV/61988987:17310/22:A2302GWT - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1021/acsomega.2c05037" target="_blank" >http://dx.doi.org/10.1021/acsomega.2c05037</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1021/acsomega.2c05037" target="_blank" >10.1021/acsomega.2c05037</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Electronic nature transition and magnetism creation in vacancy defected Ti2CO2 MXene under biaxial strain: DFTB+U study

  • Popis výsledku v původním jazyce

    The structural, electronic, and magnetic properties of vacancy defect in Ti2CO2 MXene and the effect of strain have been investigated using the density functional tight-binding (DFTB) approach including spin-polarization with Hubbard onsite correction (DFTB + U). The band gap of pure Ti2CO2 is ∼1.3 eV, which decreases to ∼0.4 and ∼1.1 eV in the case of C- and O-vacancies, respectively, i.e., the semiconducting behavior is retained. In contrast, Ti2CO2 undergoes semiconductor-to-metal transition by the introduction of a single Ti-vacancy. This transition is the result of introduced localized states in the vicinity of the Fermi level by the vacancy. Both Ti- and O-vacancies have zero net magnetic moments. Interestingly, the nonmagnetic (NM) ground state of semiconducting Ti2CO2 turns into a magnetic semiconductor by introducing a C-vacancy with a magnetization of ∼2 μB/cell. Furthermore, we studied the effect of strain on the electronic structure and magnetic properties of Ti-, C-, and O-vacant Ti2CO2. The nature of the band gap in the presence of single O-vacancy remains indirect in both compression and tensile strain, and the size of the band gap decreases. Compression strain on Ti-vacant Ti2CO2 changes metal into a direct semiconductor, and the metallic character remains under tensile biaxial strain. In opposition, a semiconductor-to-metal transition occurs by applying a compressive biaxial strain on C-vacant Ti2CO2. We also find that the magnetism is preserved under tensile strain and suppressed under compression strain on VC-Ti2CO2. Moreover, we show that double C-vacancies maintain magnetism. Our findings provide important characteristics for the application of the most frequent MXene material and should motivate further investigations because experimentally achieved MXenes always contain point defects.

  • Název v anglickém jazyce

    Electronic nature transition and magnetism creation in vacancy defected Ti2CO2 MXene under biaxial strain: DFTB+U study

  • Popis výsledku anglicky

    The structural, electronic, and magnetic properties of vacancy defect in Ti2CO2 MXene and the effect of strain have been investigated using the density functional tight-binding (DFTB) approach including spin-polarization with Hubbard onsite correction (DFTB + U). The band gap of pure Ti2CO2 is ∼1.3 eV, which decreases to ∼0.4 and ∼1.1 eV in the case of C- and O-vacancies, respectively, i.e., the semiconducting behavior is retained. In contrast, Ti2CO2 undergoes semiconductor-to-metal transition by the introduction of a single Ti-vacancy. This transition is the result of introduced localized states in the vicinity of the Fermi level by the vacancy. Both Ti- and O-vacancies have zero net magnetic moments. Interestingly, the nonmagnetic (NM) ground state of semiconducting Ti2CO2 turns into a magnetic semiconductor by introducing a C-vacancy with a magnetization of ∼2 μB/cell. Furthermore, we studied the effect of strain on the electronic structure and magnetic properties of Ti-, C-, and O-vacant Ti2CO2. The nature of the band gap in the presence of single O-vacancy remains indirect in both compression and tensile strain, and the size of the band gap decreases. Compression strain on Ti-vacant Ti2CO2 changes metal into a direct semiconductor, and the metallic character remains under tensile biaxial strain. In opposition, a semiconductor-to-metal transition occurs by applying a compressive biaxial strain on C-vacant Ti2CO2. We also find that the magnetism is preserved under tensile strain and suppressed under compression strain on VC-Ti2CO2. Moreover, we show that double C-vacancies maintain magnetism. Our findings provide important characteristics for the application of the most frequent MXene material and should motivate further investigations because experimentally achieved MXenes always contain point defects.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10302 - Condensed matter physics (including formerly solid state physics, supercond.)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA21-28709S" target="_blank" >GA21-28709S: MXeny – materiály pro technologické aplikace budoucí generace</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    ACS Omega

  • ISSN

    2470-1343

  • e-ISSN

    2470-1343

  • Svazek periodika

  • Číslo periodika v rámci svazku

    46

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    12

  • Strana od-do

    42221-42232

  • Kód UT WoS článku

    000885515100001

  • EID výsledku v databázi Scopus

    2-s2.0-85141981142