Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Effect of vacancy defect and strain on the structural, electronic and magnetic properties of carbon nitride 2D monolayers by DFTB method

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F23%3AA2402KUK" target="_blank" >RIV/61988987:17310/23:A2402KUK - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1088/1361-648X/acd293" target="_blank" >http://dx.doi.org/10.1088/1361-648X/acd293</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1088/1361-648X/acd293" target="_blank" >10.1088/1361-648X/acd293</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Effect of vacancy defect and strain on the structural, electronic and magnetic properties of carbon nitride 2D monolayers by DFTB method

  • Popis výsledku v původním jazyce

    We investigate the electronic and magnetic properties of C$_{mathrm{n}}$N$_{mathrm{m}}$ (C6N6, C2N, C3N and C3N4) using density functional tight-binding (DFTB) method. We find that these compounds are dynamically stable and their electronic band gaps are in the range of 0.59–3.28 eV. We show that the electronic structure is modulated by strain and the semiconducting behavior is well preserved except for C3N at +5% biaxial strain, where a transition from semiconductor to metal was observed. Under +3% biaxial strain, C3N4 undergoes a transition from an indirect (K-Γ) to a direct (Γ-Γ) band gap. Moreover, band gap of C2N transforms from direct (Γ-Γ) to indirect (M-Γ) under +4% biaxial strain. However, no change in the nature of the band gap of C6N6. Further, when the studied materials under uniaxial tensile strain, their bandgaps reduce. Our theoretical study showed that an indirect-to-direct nature transition may occur for C6N6 and for C3N4, which broadens their applications. On the other hand, magnetism is observed in all N-vacancy defected C$_{mathrm{n}}$N$_{mathrm{m}}$, which encourages its application in spintronic. Moreover, calculations of formation energies indicate that N-vacancy is energetically more favorable than C-vacancy in both C2N and C3N4. Opposite behavior found for C6N6 and C3N.

  • Název v anglickém jazyce

    Effect of vacancy defect and strain on the structural, electronic and magnetic properties of carbon nitride 2D monolayers by DFTB method

  • Popis výsledku anglicky

    We investigate the electronic and magnetic properties of C$_{mathrm{n}}$N$_{mathrm{m}}$ (C6N6, C2N, C3N and C3N4) using density functional tight-binding (DFTB) method. We find that these compounds are dynamically stable and their electronic band gaps are in the range of 0.59–3.28 eV. We show that the electronic structure is modulated by strain and the semiconducting behavior is well preserved except for C3N at +5% biaxial strain, where a transition from semiconductor to metal was observed. Under +3% biaxial strain, C3N4 undergoes a transition from an indirect (K-Γ) to a direct (Γ-Γ) band gap. Moreover, band gap of C2N transforms from direct (Γ-Γ) to indirect (M-Γ) under +4% biaxial strain. However, no change in the nature of the band gap of C6N6. Further, when the studied materials under uniaxial tensile strain, their bandgaps reduce. Our theoretical study showed that an indirect-to-direct nature transition may occur for C6N6 and for C3N4, which broadens their applications. On the other hand, magnetism is observed in all N-vacancy defected C$_{mathrm{n}}$N$_{mathrm{m}}$, which encourages its application in spintronic. Moreover, calculations of formation energies indicate that N-vacancy is energetically more favorable than C-vacancy in both C2N and C3N4. Opposite behavior found for C6N6 and C3N.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10302 - Condensed matter physics (including formerly solid state physics, supercond.)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA21-28709S" target="_blank" >GA21-28709S: MXeny – materiály pro technologické aplikace budoucí generace</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    J PHYS-CONDENS MAT

  • ISSN

    0953-8984

  • e-ISSN

  • Svazek periodika

  • Číslo periodika v rámci svazku

    32

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    12

  • Strana od-do

  • Kód UT WoS článku

    000991624500001

  • EID výsledku v databázi Scopus

    2-s2.0-85159221467