Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Plastic flow between nanometer-spaced planar defects in nanostructured diamond and boron nitride

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27640%2F20%3A10244891" target="_blank" >RIV/61989100:27640/20:10244891 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/61989100:27740/20:10244891

  • Výsledek na webu

    <a href="https://journals.aps.org/prb/abstract/10.1103/PhysRevB.101.014104" target="_blank" >https://journals.aps.org/prb/abstract/10.1103/PhysRevB.101.014104</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1103/PhysRevB.101.014104" target="_blank" >10.1103/PhysRevB.101.014104</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Plastic flow between nanometer-spaced planar defects in nanostructured diamond and boron nitride

  • Popis výsledku v původním jazyce

    The fundamental mechanisms of strengthening/hardening and toughening that may be modified by various nanometer-spaced planar defects in the ultrahard nanostructured diamond and boron nitride (BN), e.g., nanotwins, stacking faults, and coherent heterophase interfaces, are still far from understood. In the present work, by means of first-principles approaches to derive ideal strength and Peierls stress, we performed a comprehensive investigation on the effect of the nanometer-spaced planar defects on the strength and plasticity of nanostructured diamond and BN under both uniform and localized deformations. A profound strengthening under uniform strain is revealed to be closely dependent on the spacing of planar defects, yet differing from the disappearing dependence under localized strain. It is further shown that the breakage and reconstruction of covalent bonds occurs only for very small spacing of planar defects under uniform deformations, being inconsistent with the average spacing found in the experimentally prepared nanotwinned diamond and BN, thus casting a doubt on the feasibility of the previously proposed strengthening mechanism. Under localized deformations, only the planar defects of twin in c-diamond or c-BN and coherent heterophase interface in c-/h-diamond or c-/w-BN are found to increase the barrier for the parallel slip of both 1/2(110) shuffle-set full dislocation and 1/6(112) glide-set partial dislocation, resulting in the strengthening of nanostructured diamond and BN, which agrees to the experimental observation. These findings not only yield a physical insight in strengthening/toughening nanostructured diamond and BN, but highlight the importance to understand the synergetic effect of length scale and interface between planar defects in designing superhard nanostructured materials.

  • Název v anglickém jazyce

    Plastic flow between nanometer-spaced planar defects in nanostructured diamond and boron nitride

  • Popis výsledku anglicky

    The fundamental mechanisms of strengthening/hardening and toughening that may be modified by various nanometer-spaced planar defects in the ultrahard nanostructured diamond and boron nitride (BN), e.g., nanotwins, stacking faults, and coherent heterophase interfaces, are still far from understood. In the present work, by means of first-principles approaches to derive ideal strength and Peierls stress, we performed a comprehensive investigation on the effect of the nanometer-spaced planar defects on the strength and plasticity of nanostructured diamond and BN under both uniform and localized deformations. A profound strengthening under uniform strain is revealed to be closely dependent on the spacing of planar defects, yet differing from the disappearing dependence under localized strain. It is further shown that the breakage and reconstruction of covalent bonds occurs only for very small spacing of planar defects under uniform deformations, being inconsistent with the average spacing found in the experimentally prepared nanotwinned diamond and BN, thus casting a doubt on the feasibility of the previously proposed strengthening mechanism. Under localized deformations, only the planar defects of twin in c-diamond or c-BN and coherent heterophase interface in c-/h-diamond or c-/w-BN are found to increase the barrier for the parallel slip of both 1/2(110) shuffle-set full dislocation and 1/6(112) glide-set partial dislocation, resulting in the strengthening of nanostructured diamond and BN, which agrees to the experimental observation. These findings not only yield a physical insight in strengthening/toughening nanostructured diamond and BN, but highlight the importance to understand the synergetic effect of length scale and interface between planar defects in designing superhard nanostructured materials.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10302 - Condensed matter physics (including formerly solid state physics, supercond.)

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Physical review B

  • ISSN

    2469-9950

  • e-ISSN

  • Svazek periodika

    101

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    11

  • Strana od-do

  • Kód UT WoS článku

    000507494000001

  • EID výsledku v databázi Scopus

    2-s2.0-85078326827