Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Ultrastrong pi-Bonded Interface as Ductile Plastic Flow Channel in Nanostructured Diamond

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F20%3A10244883" target="_blank" >RIV/61989100:27740/20:10244883 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://pubs.acs.org/doi/10.1021/acsami.9b19725?ref=pdf" target="_blank" >https://pubs.acs.org/doi/10.1021/acsami.9b19725?ref=pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1021/acsami.9b19725" target="_blank" >10.1021/acsami.9b19725</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Ultrastrong pi-Bonded Interface as Ductile Plastic Flow Channel in Nanostructured Diamond

  • Popis výsledku v původním jazyce

    A combinational effect of nanostructured crystallites and it-bonded interfaces is much attractive in solving the conflict between strength/hardness and toughness to design extrinsically superhard materials with enhanced fracture toughness and/or other properties such as tunable electronic properties. In the present work, taking the experimentally observed pi-bonded interfaces in nanostructured diamond as the prototype, we theoretically investigated their stabilities, electronic structures, and mechanical strengths with special consideration of the size effect of nanocrystallites or nanolayers. It is unprecedentedly found that the pi-bonded interfaces exhibit tunable electronic semiconducting properties, superior fracture toughness, and anomalously large creep-like plasticity at the cost of minor losses in strength/hardness; such unique combination is uncovered to be attributed to the ductile bridging effect of the sp(2) bonds across the pi-bonded interface that dominates the localized plastic flow channel. As the length scale of nanocrystallites/nanolayers is lower than a critical value, however, the first failure occurring inside nanocrystallites/ nanolayers features softening and embrittling. These findings not only provide a novel insight into the unique strengthening and toughening origin observed in ultrahard nanostructured diamonds consisting of nanotwins, nanocomposites, and nanocrystallites but also highlight a unique pathway by combining the nanostructured crystallites and the strongly bonded interface to design the novel superhard materials with superior toughness.

  • Název v anglickém jazyce

    Ultrastrong pi-Bonded Interface as Ductile Plastic Flow Channel in Nanostructured Diamond

  • Popis výsledku anglicky

    A combinational effect of nanostructured crystallites and it-bonded interfaces is much attractive in solving the conflict between strength/hardness and toughness to design extrinsically superhard materials with enhanced fracture toughness and/or other properties such as tunable electronic properties. In the present work, taking the experimentally observed pi-bonded interfaces in nanostructured diamond as the prototype, we theoretically investigated their stabilities, electronic structures, and mechanical strengths with special consideration of the size effect of nanocrystallites or nanolayers. It is unprecedentedly found that the pi-bonded interfaces exhibit tunable electronic semiconducting properties, superior fracture toughness, and anomalously large creep-like plasticity at the cost of minor losses in strength/hardness; such unique combination is uncovered to be attributed to the ductile bridging effect of the sp(2) bonds across the pi-bonded interface that dominates the localized plastic flow channel. As the length scale of nanocrystallites/nanolayers is lower than a critical value, however, the first failure occurring inside nanocrystallites/ nanolayers features softening and embrittling. These findings not only provide a novel insight into the unique strengthening and toughening origin observed in ultrahard nanostructured diamonds consisting of nanotwins, nanocomposites, and nanocrystallites but also highlight a unique pathway by combining the nanostructured crystallites and the strongly bonded interface to design the novel superhard materials with superior toughness.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10300 - Physical sciences

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    ACS applied materials &amp; interfaces

  • ISSN

    1944-8244

  • e-ISSN

  • Svazek periodika

    12

  • Číslo periodika v rámci svazku

    3

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    8

  • Strana od-do

    4135-4142

  • Kód UT WoS článku

    000509428300090

  • EID výsledku v databázi Scopus

    2-s2.0-85078106536