First-principles design of strong solids: Approaches and applications
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F19%3A10243652" target="_blank" >RIV/61989100:27740/19:10243652 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/abs/pii/S0370157319303060?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/abs/pii/S0370157319303060?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.physrep.2019.09.004" target="_blank" >10.1016/j.physrep.2019.09.004</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
First-principles design of strong solids: Approaches and applications
Popis výsledku v původním jazyce
In the design of strong solids, especially hard and superhard materials, this review article attempts to critically cover an extended field of first-principles derived mechanical properties by considering both intrinsic (i.e., crystal structures, bonding nature and strength) and extrinsic (i.e., nanostructures and interface characteristics) parameters. For the intrinsic parameters, firstly, the bonding topology and nature, elastic property and ductility-brittleness criterion provide critical physics on the understanding of the mechanical response of a crystal. Secondly, the ideal strength model, the generalized stacking fault energy model, and ab initio informed Peierls-Nabarro model uniquely quantify the fracture and plastic resistance of a crystal. Taking the extrinsic parameters into further consideration, the recent progress of first-principles investigations on the mechanical behavior of nanostructured solids and heterogeneous interfaces is selectively reviewed, targeted as the origin and/or carrier of the fracture or plastic deformation. These extrinsic parameters include the work of adhesion, the critical stresses for interfacial cleavage and glide and so on. Finally, by classifying the strong solids into intrinsically and extrinsically hard/superhard materials, two different rules are proposed: (1) three-dimensional short covalent bond networks with sufficiently high ideal strength and Peierls resistance and (2) nanosized crystallites/layers glued by strongly bonded thin interfaces. (C) 2019 Elsevier B.V. All rights reserved.
Název v anglickém jazyce
First-principles design of strong solids: Approaches and applications
Popis výsledku anglicky
In the design of strong solids, especially hard and superhard materials, this review article attempts to critically cover an extended field of first-principles derived mechanical properties by considering both intrinsic (i.e., crystal structures, bonding nature and strength) and extrinsic (i.e., nanostructures and interface characteristics) parameters. For the intrinsic parameters, firstly, the bonding topology and nature, elastic property and ductility-brittleness criterion provide critical physics on the understanding of the mechanical response of a crystal. Secondly, the ideal strength model, the generalized stacking fault energy model, and ab initio informed Peierls-Nabarro model uniquely quantify the fracture and plastic resistance of a crystal. Taking the extrinsic parameters into further consideration, the recent progress of first-principles investigations on the mechanical behavior of nanostructured solids and heterogeneous interfaces is selectively reviewed, targeted as the origin and/or carrier of the fracture or plastic deformation. These extrinsic parameters include the work of adhesion, the critical stresses for interfacial cleavage and glide and so on. Finally, by classifying the strong solids into intrinsically and extrinsically hard/superhard materials, two different rules are proposed: (1) three-dimensional short covalent bond networks with sufficiently high ideal strength and Peierls resistance and (2) nanosized crystallites/layers glued by strongly bonded thin interfaces. (C) 2019 Elsevier B.V. All rights reserved.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Physics Reports
ISSN
0370-1573
e-ISSN
—
Svazek periodika
826
Číslo periodika v rámci svazku
826
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
49
Strana od-do
1-49
Kód UT WoS článku
000498328200001
EID výsledku v databázi Scopus
—