Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

MAELAS: MAgneto-ELAStic properties calculation via computational high-throughput approach

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27640%2F21%3A10247399" target="_blank" >RIV/61989100:27640/21:10247399 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/61989100:27740/21:10247399

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S0010465521000801" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0010465521000801</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.cpc.2021.107964" target="_blank" >10.1016/j.cpc.2021.107964</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    MAELAS: MAgneto-ELAStic properties calculation via computational high-throughput approach

  • Popis výsledku v původním jazyce

    In this work, we present the program MAELAS to calculate magnetocrystalline anisotropy energy, anisotropic magnetostrictive coefficients and magnetoelastic constants in an automated way by Density Functional Theory calculations. The program is based on the length optimization of the unit cell proposed by Wu and Freeman to calculate the magnetostrictive coefficients for cubic crystals. In addition to cubic crystals, this method is also implemented and generalized for other types of crystals that may be of interest in the study of magnetostrictive materials. As a benchmark, some tests are shown for well-known magnetic materials. Program summary: Program Title: MAELAS CPC Library link to program files: https://doi.org/10.17632/gxcdg3z7t6.1 Developer&apos;s repository link: https://github.com/pnieves2019/MAELAS Code Ocean capsule: https://codeocean.com/capsule/0361425 Licensing provisions: BSD 3-clause Programming language: Python3 Nature of problem: To calculate anisotropic magnetostrictive coefficients and magnetoelastic constants in an automated way based on Density Functional Theory methods. Solution method: In the first stage, the unit cell is relaxed through a spin-polarized calculation without spin-orbit coupling. Next, after a crystal symmetry analysis, a set of deformed lattice and spin configurations are generated using the pymatgen library [1]. The energy of these states is calculated by the first-principles code VASP [3], including the spin-orbit coupling. The anisotropic magnetostrictive coefficients are derived from the fitting of these energies to a quadratic polynomial [2]. Finally, if the elastic tensor is provided [4], then the magnetoelastic constants are also calculated. Additional comments including restrictions and unusual features: This version supports the following crystal systems: Cubic (point groups 432, 4̄3m, m3̄m), Hexagonal (6mm, 622, 6̄2m, 6DIVISION SLASHmmm), Trigonal (32, 3m, 3̄m), Tetragonal (4mm, 422, 4̄2m, 4DIVISION SLASHmmm) and Orthorhombic (222, 2mm, mmm). References: [1] S. P. Ong, W. D. Richards, A. Jain, G. Hautier, M. Kocher, S. Cholia, D. Gunter, V. L. Chevrier, K. A. Persson, and G. Ceder, Comput. Mater. Sci. 68, 314 (2013). [2] R. Wu, A. J. Freeman, Journal of Applied Physics 79, 6209-6212 (1996). [3] G. Kresse, J. Furthmüller, Phys. Rev. B 54 (1996) 11169. [4] S. Zhang and R. Zhang, Comput. Phys. Commun. 220, 403 (2017). (C) 2021 Elsevier B.V.

  • Název v anglickém jazyce

    MAELAS: MAgneto-ELAStic properties calculation via computational high-throughput approach

  • Popis výsledku anglicky

    In this work, we present the program MAELAS to calculate magnetocrystalline anisotropy energy, anisotropic magnetostrictive coefficients and magnetoelastic constants in an automated way by Density Functional Theory calculations. The program is based on the length optimization of the unit cell proposed by Wu and Freeman to calculate the magnetostrictive coefficients for cubic crystals. In addition to cubic crystals, this method is also implemented and generalized for other types of crystals that may be of interest in the study of magnetostrictive materials. As a benchmark, some tests are shown for well-known magnetic materials. Program summary: Program Title: MAELAS CPC Library link to program files: https://doi.org/10.17632/gxcdg3z7t6.1 Developer&apos;s repository link: https://github.com/pnieves2019/MAELAS Code Ocean capsule: https://codeocean.com/capsule/0361425 Licensing provisions: BSD 3-clause Programming language: Python3 Nature of problem: To calculate anisotropic magnetostrictive coefficients and magnetoelastic constants in an automated way based on Density Functional Theory methods. Solution method: In the first stage, the unit cell is relaxed through a spin-polarized calculation without spin-orbit coupling. Next, after a crystal symmetry analysis, a set of deformed lattice and spin configurations are generated using the pymatgen library [1]. The energy of these states is calculated by the first-principles code VASP [3], including the spin-orbit coupling. The anisotropic magnetostrictive coefficients are derived from the fitting of these energies to a quadratic polynomial [2]. Finally, if the elastic tensor is provided [4], then the magnetoelastic constants are also calculated. Additional comments including restrictions and unusual features: This version supports the following crystal systems: Cubic (point groups 432, 4̄3m, m3̄m), Hexagonal (6mm, 622, 6̄2m, 6DIVISION SLASHmmm), Trigonal (32, 3m, 3̄m), Tetragonal (4mm, 422, 4̄2m, 4DIVISION SLASHmmm) and Orthorhombic (222, 2mm, mmm). References: [1] S. P. Ong, W. D. Richards, A. Jain, G. Hautier, M. Kocher, S. Cholia, D. Gunter, V. L. Chevrier, K. A. Persson, and G. Ceder, Comput. Mater. Sci. 68, 314 (2013). [2] R. Wu, A. J. Freeman, Journal of Applied Physics 79, 6209-6212 (1996). [3] G. Kresse, J. Furthmüller, Phys. Rev. B 54 (1996) 11169. [4] S. Zhang and R. Zhang, Comput. Phys. Commun. 220, 403 (2017). (C) 2021 Elsevier B.V.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10302 - Condensed matter physics (including formerly solid state physics, supercond.)

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Computer Physics Communications

  • ISSN

    0010-4655

  • e-ISSN

  • Svazek periodika

    264

  • Číslo periodika v rámci svazku

    July

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    22

  • Strana od-do

  • Kód UT WoS článku

    000659862300018

  • EID výsledku v databázi Scopus

    2-s2.0-85104105353