MAELAS: MAgneto-ELAStic properties calculation via computational high-throughput approach
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27640%2F21%3A10247399" target="_blank" >RIV/61989100:27640/21:10247399 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27740/21:10247399
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0010465521000801" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0010465521000801</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cpc.2021.107964" target="_blank" >10.1016/j.cpc.2021.107964</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
MAELAS: MAgneto-ELAStic properties calculation via computational high-throughput approach
Popis výsledku v původním jazyce
In this work, we present the program MAELAS to calculate magnetocrystalline anisotropy energy, anisotropic magnetostrictive coefficients and magnetoelastic constants in an automated way by Density Functional Theory calculations. The program is based on the length optimization of the unit cell proposed by Wu and Freeman to calculate the magnetostrictive coefficients for cubic crystals. In addition to cubic crystals, this method is also implemented and generalized for other types of crystals that may be of interest in the study of magnetostrictive materials. As a benchmark, some tests are shown for well-known magnetic materials. Program summary: Program Title: MAELAS CPC Library link to program files: https://doi.org/10.17632/gxcdg3z7t6.1 Developer's repository link: https://github.com/pnieves2019/MAELAS Code Ocean capsule: https://codeocean.com/capsule/0361425 Licensing provisions: BSD 3-clause Programming language: Python3 Nature of problem: To calculate anisotropic magnetostrictive coefficients and magnetoelastic constants in an automated way based on Density Functional Theory methods. Solution method: In the first stage, the unit cell is relaxed through a spin-polarized calculation without spin-orbit coupling. Next, after a crystal symmetry analysis, a set of deformed lattice and spin configurations are generated using the pymatgen library [1]. The energy of these states is calculated by the first-principles code VASP [3], including the spin-orbit coupling. The anisotropic magnetostrictive coefficients are derived from the fitting of these energies to a quadratic polynomial [2]. Finally, if the elastic tensor is provided [4], then the magnetoelastic constants are also calculated. Additional comments including restrictions and unusual features: This version supports the following crystal systems: Cubic (point groups 432, 4̄3m, m3̄m), Hexagonal (6mm, 622, 6̄2m, 6DIVISION SLASHmmm), Trigonal (32, 3m, 3̄m), Tetragonal (4mm, 422, 4̄2m, 4DIVISION SLASHmmm) and Orthorhombic (222, 2mm, mmm). References: [1] S. P. Ong, W. D. Richards, A. Jain, G. Hautier, M. Kocher, S. Cholia, D. Gunter, V. L. Chevrier, K. A. Persson, and G. Ceder, Comput. Mater. Sci. 68, 314 (2013). [2] R. Wu, A. J. Freeman, Journal of Applied Physics 79, 6209-6212 (1996). [3] G. Kresse, J. Furthmüller, Phys. Rev. B 54 (1996) 11169. [4] S. Zhang and R. Zhang, Comput. Phys. Commun. 220, 403 (2017). (C) 2021 Elsevier B.V.
Název v anglickém jazyce
MAELAS: MAgneto-ELAStic properties calculation via computational high-throughput approach
Popis výsledku anglicky
In this work, we present the program MAELAS to calculate magnetocrystalline anisotropy energy, anisotropic magnetostrictive coefficients and magnetoelastic constants in an automated way by Density Functional Theory calculations. The program is based on the length optimization of the unit cell proposed by Wu and Freeman to calculate the magnetostrictive coefficients for cubic crystals. In addition to cubic crystals, this method is also implemented and generalized for other types of crystals that may be of interest in the study of magnetostrictive materials. As a benchmark, some tests are shown for well-known magnetic materials. Program summary: Program Title: MAELAS CPC Library link to program files: https://doi.org/10.17632/gxcdg3z7t6.1 Developer's repository link: https://github.com/pnieves2019/MAELAS Code Ocean capsule: https://codeocean.com/capsule/0361425 Licensing provisions: BSD 3-clause Programming language: Python3 Nature of problem: To calculate anisotropic magnetostrictive coefficients and magnetoelastic constants in an automated way based on Density Functional Theory methods. Solution method: In the first stage, the unit cell is relaxed through a spin-polarized calculation without spin-orbit coupling. Next, after a crystal symmetry analysis, a set of deformed lattice and spin configurations are generated using the pymatgen library [1]. The energy of these states is calculated by the first-principles code VASP [3], including the spin-orbit coupling. The anisotropic magnetostrictive coefficients are derived from the fitting of these energies to a quadratic polynomial [2]. Finally, if the elastic tensor is provided [4], then the magnetoelastic constants are also calculated. Additional comments including restrictions and unusual features: This version supports the following crystal systems: Cubic (point groups 432, 4̄3m, m3̄m), Hexagonal (6mm, 622, 6̄2m, 6DIVISION SLASHmmm), Trigonal (32, 3m, 3̄m), Tetragonal (4mm, 422, 4̄2m, 4DIVISION SLASHmmm) and Orthorhombic (222, 2mm, mmm). References: [1] S. P. Ong, W. D. Richards, A. Jain, G. Hautier, M. Kocher, S. Cholia, D. Gunter, V. L. Chevrier, K. A. Persson, and G. Ceder, Comput. Mater. Sci. 68, 314 (2013). [2] R. Wu, A. J. Freeman, Journal of Applied Physics 79, 6209-6212 (1996). [3] G. Kresse, J. Furthmüller, Phys. Rev. B 54 (1996) 11169. [4] S. Zhang and R. Zhang, Comput. Phys. Commun. 220, 403 (2017). (C) 2021 Elsevier B.V.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Computer Physics Communications
ISSN
0010-4655
e-ISSN
—
Svazek periodika
264
Číslo periodika v rámci svazku
July
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
22
Strana od-do
—
Kód UT WoS článku
000659862300018
EID výsledku v databázi Scopus
2-s2.0-85104105353