Automated calculations of exchange magnetostriction
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27640%2F23%3A10252243" target="_blank" >RIV/61989100:27640/23:10252243 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27740/23:10252243
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0927025623001520?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0927025623001520?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.commatsci.2023.112158" target="_blank" >10.1016/j.commatsci.2023.112158</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Automated calculations of exchange magnetostriction
Popis výsledku v původním jazyce
We present a methodology based on deformations of the unit cell that allows to compute the isotropicmagnetoelastic constants, isotropic magnetostrictive coefficients and spontaneous volume magnetostrictionassociated to the exchange magnetostriction. This method is implemented in the python package MAELAS(v3.0), so that it can be used to obtain these quantities by first-principles calculations and classical spin-latticemodels in an automated way. We show that the required reference state to obtain the spontaneous volumemagnetostriction combines the equilibrium volume of the paramagnetic state and magnetic order of the groundstate. In the framework of a classical spin-lattice model, we find that the analysis of volume dependenceof this method jointly to the knowledge of the spatial derivative of the exchange interactions can revealthe equilibrium volume of the paramagnetic state and spontaneous volume magnetostriction unambiguouslywithout involving any calculation of the paramagnetic state. We identify an error in the theoretical expressionof the isotropic magnetostrictive coefficient ????????1,0 for uniaxial crystals given in previous publications, which iscorrected in this work. The presented computational tool may be helpful to provide a better understandingand characterization of the relationship between the exchange interaction and magnetoelasticity.
Název v anglickém jazyce
Automated calculations of exchange magnetostriction
Popis výsledku anglicky
We present a methodology based on deformations of the unit cell that allows to compute the isotropicmagnetoelastic constants, isotropic magnetostrictive coefficients and spontaneous volume magnetostrictionassociated to the exchange magnetostriction. This method is implemented in the python package MAELAS(v3.0), so that it can be used to obtain these quantities by first-principles calculations and classical spin-latticemodels in an automated way. We show that the required reference state to obtain the spontaneous volumemagnetostriction combines the equilibrium volume of the paramagnetic state and magnetic order of the groundstate. In the framework of a classical spin-lattice model, we find that the analysis of volume dependenceof this method jointly to the knowledge of the spatial derivative of the exchange interactions can revealthe equilibrium volume of the paramagnetic state and spontaneous volume magnetostriction unambiguouslywithout involving any calculation of the paramagnetic state. We identify an error in the theoretical expressionof the isotropic magnetostrictive coefficient ????????1,0 for uniaxial crystals given in previous publications, which iscorrected in this work. The presented computational tool may be helpful to provide a better understandingand characterization of the relationship between the exchange interaction and magnetoelasticity.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Computational Materials Science
ISSN
0927-0256
e-ISSN
1879-0801
Svazek periodika
224
Číslo periodika v rámci svazku
May
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
18
Strana od-do
—
Kód UT WoS článku
000981722900001
EID výsledku v databázi Scopus
2-s2.0-85152137823