Spin-lattice model for cubic crystals
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27640%2F21%3A10247398" target="_blank" >RIV/61989100:27640/21:10247398 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27740/21:10247398
Výsledek na webu
<a href="https://journals.aps.org/prb/abstract/10.1103/PhysRevB.103.094437" target="_blank" >https://journals.aps.org/prb/abstract/10.1103/PhysRevB.103.094437</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1103/PhysRevB.103.094437" target="_blank" >10.1103/PhysRevB.103.094437</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Spin-lattice model for cubic crystals
Popis výsledku v původním jazyce
We present a methodology based on the Néel model to build a classical spin-lattice Hamiltonian for cubic crystals capable of describing magnetic properties induced by the spin-orbit coupling like magnetocrystalline anisotropy and anisotropic magnetostriction, as well as exchange magnetostriction. Taking advantage of the analytical solutions of the Néel model, we derive theoretical expressions for the parametrization of the exchange integrals and Néel dipole and quadrupole terms that link them to the magnetic properties of the material. This approach allows us to build accurate spin-lattice models with the desired magnetoelastic properties. We also explore a possible way to model the volume dependence of magnetic moment based on the Landau energy. This feature allows us to consider the effects of hydrostatic pressure on the saturation magnetization. We apply this method to develop a spin-lattice model for BCC Fe and FCC Ni, and we show that it accurately reproduces the experimental elastic tensor, magnetocrystalline anisotropy under pressure, anisotropic magnetostrictive coefficients, volume magnetostriction, and saturation magnetization under pressure at zero temperature. This work could constitute a step towards large-scale modeling of magnetoelastic phenomena. (C) 2021 American Physical Society.
Název v anglickém jazyce
Spin-lattice model for cubic crystals
Popis výsledku anglicky
We present a methodology based on the Néel model to build a classical spin-lattice Hamiltonian for cubic crystals capable of describing magnetic properties induced by the spin-orbit coupling like magnetocrystalline anisotropy and anisotropic magnetostriction, as well as exchange magnetostriction. Taking advantage of the analytical solutions of the Néel model, we derive theoretical expressions for the parametrization of the exchange integrals and Néel dipole and quadrupole terms that link them to the magnetic properties of the material. This approach allows us to build accurate spin-lattice models with the desired magnetoelastic properties. We also explore a possible way to model the volume dependence of magnetic moment based on the Landau energy. This feature allows us to consider the effects of hydrostatic pressure on the saturation magnetization. We apply this method to develop a spin-lattice model for BCC Fe and FCC Ni, and we show that it accurately reproduces the experimental elastic tensor, magnetocrystalline anisotropy under pressure, anisotropic magnetostrictive coefficients, volume magnetostriction, and saturation magnetization under pressure at zero temperature. This work could constitute a step towards large-scale modeling of magnetoelastic phenomena. (C) 2021 American Physical Society.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_013%2F0001791" target="_blank" >EF16_013/0001791: IT4Innovations národní superpočítačové centrum - cesta k exascale</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Physical review B
ISSN
2469-9950
e-ISSN
—
Svazek periodika
103
Číslo periodika v rámci svazku
9
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
16
Strana od-do
—
Kód UT WoS článku
000646423000002
EID výsledku v databázi Scopus
2-s2.0-85103761059