Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Temperature dependence of magnetic anisotropy and magnetoelasticity from classical spin-lattice calculations

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F23%3A10252242" target="_blank" >RIV/61989100:27740/23:10252242 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://journals.aps.org/prb/abstract/10.1103/PhysRevB.107.094426" target="_blank" >https://journals.aps.org/prb/abstract/10.1103/PhysRevB.107.094426</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1103/PhysRevB.107.094426" target="_blank" >10.1103/PhysRevB.107.094426</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Temperature dependence of magnetic anisotropy and magnetoelasticity from classical spin-lattice calculations

  • Popis výsledku v původním jazyce

    We present a classical molecular-spin dynamics (MSD) methodology that enables accurate computations of the temperature dependence of the magnetocrystalline anisotropy as well as magnetoelastic properties of magnetic materials. The nonmagnetic interactions are accounted for by a spectral neighbor analysis potential (SNAP) machine-learned interatomic potential, whereas the magnetoelastic contributions are accounted for using a combination of an extended Heisenberg Hamiltonian and a Néel pair interaction model, representing both the exchange interaction and spin-orbit-coupling effects, respectively. All magnetoelastic potential components are parameterized using a combination of first-principles and experimental data. Our framework is applied to the α phase of iron. Initial testing of our MSD model is done using a 0 K parametrization of the Néel interaction model. After this, we examine how individual Néel parameters impact the B1 and B2 magnetostrictive coefficients using a moment-independent δ sensitivity analysis. The results from this study are then used to initialize a genetic algorithm optimization which explores the Néel parameter phase space and tries to minimize the error in the B1 and B2 magnetostrictive coefficients in the range of 0-1200 K. Our results show that while both the 0 K and genetic algorithm optimized parametrization provide good experimental agreement for B1 and B2, only the genetic algorithm optimized results can capture the second peak in the B1 magnetostrictive coefficient which occurs near approximately 800 K.

  • Název v anglickém jazyce

    Temperature dependence of magnetic anisotropy and magnetoelasticity from classical spin-lattice calculations

  • Popis výsledku anglicky

    We present a classical molecular-spin dynamics (MSD) methodology that enables accurate computations of the temperature dependence of the magnetocrystalline anisotropy as well as magnetoelastic properties of magnetic materials. The nonmagnetic interactions are accounted for by a spectral neighbor analysis potential (SNAP) machine-learned interatomic potential, whereas the magnetoelastic contributions are accounted for using a combination of an extended Heisenberg Hamiltonian and a Néel pair interaction model, representing both the exchange interaction and spin-orbit-coupling effects, respectively. All magnetoelastic potential components are parameterized using a combination of first-principles and experimental data. Our framework is applied to the α phase of iron. Initial testing of our MSD model is done using a 0 K parametrization of the Néel interaction model. After this, we examine how individual Néel parameters impact the B1 and B2 magnetostrictive coefficients using a moment-independent δ sensitivity analysis. The results from this study are then used to initialize a genetic algorithm optimization which explores the Néel parameter phase space and tries to minimize the error in the B1 and B2 magnetostrictive coefficients in the range of 0-1200 K. Our results show that while both the 0 K and genetic algorithm optimized parametrization provide good experimental agreement for B1 and B2, only the genetic algorithm optimized results can capture the second peak in the B1 magnetostrictive coefficient which occurs near approximately 800 K.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10302 - Condensed matter physics (including formerly solid state physics, supercond.)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF16_013%2F0001791" target="_blank" >EF16_013/0001791: IT4Innovations národní superpočítačové centrum - cesta k exascale</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Physical review B

  • ISSN

    2469-9950

  • e-ISSN

    2469-9969

  • Svazek periodika

    107

  • Číslo periodika v rámci svazku

    9

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    11

  • Strana od-do

  • Kód UT WoS článku

    000958592100001

  • EID výsledku v databázi Scopus

    2-s2.0-85151278602