In situ cross-linking construction of 3D mesoporous bimetallic phosphide-in-carbon superstructure with atomic interface toward enhanced sodium ion storage performance
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27640%2F21%3A10247491" target="_blank" >RIV/61989100:27640/21:10247491 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27740/21:10247491
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S1385894720335737" target="_blank" >https://www.sciencedirect.com/science/article/pii/S1385894720335737</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cej.2020.127449" target="_blank" >10.1016/j.cej.2020.127449</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
In situ cross-linking construction of 3D mesoporous bimetallic phosphide-in-carbon superstructure with atomic interface toward enhanced sodium ion storage performance
Popis výsledku v původním jazyce
Constructing heterostructures are capable of offering fascinating performance for electronics owing to the built-in charge transfer driving force. However, exploring a universal methodology to rationally design and control-lable synthesis of heterostructure with high stability of interface is a big challenge. Also the synergistic effect of the heterointerface in the composites remains to be clarified. Here, we report three-dimensional (3D) FeP/CoP heterostructure embedded within N-doped carbon aerogel (FeP/CoP-NA) through an in situ cross-linking and phosphorization process. In such a 3D hybrid, the FeP/CoP heterocrystals are wrapped by N-doped carbon which form a core-shell structure. Benefiting from the unique porous network induced by N-doped carbon, the con-ducting highway is built to promote the ion and electron fast diffusion. This structure can accommodate the volume change of FeP/CoP, which prevent the agglomeration and act as the protecting layer to maintain the integrity of the interface. Impressively, the atomic interface between FeP/CoP is successfully constructed, which could not only introduce enhanced capacitive contribution to facilitate electron transport, but also provide extra active sites to adsorb more Na+ proved by both experiments and density functional theory (DFT) calculations. As expected, FeP/CoP-NA electrode demonstrates an excellent rate capability of 342 mAh g(-1) at a current of 5 A g(-1) current density. , a high specific capacity of 525 mAh g(-1) at 0.2 A g(-1), and a long cycling stability over 8000 cycles at high
Název v anglickém jazyce
In situ cross-linking construction of 3D mesoporous bimetallic phosphide-in-carbon superstructure with atomic interface toward enhanced sodium ion storage performance
Popis výsledku anglicky
Constructing heterostructures are capable of offering fascinating performance for electronics owing to the built-in charge transfer driving force. However, exploring a universal methodology to rationally design and control-lable synthesis of heterostructure with high stability of interface is a big challenge. Also the synergistic effect of the heterointerface in the composites remains to be clarified. Here, we report three-dimensional (3D) FeP/CoP heterostructure embedded within N-doped carbon aerogel (FeP/CoP-NA) through an in situ cross-linking and phosphorization process. In such a 3D hybrid, the FeP/CoP heterocrystals are wrapped by N-doped carbon which form a core-shell structure. Benefiting from the unique porous network induced by N-doped carbon, the con-ducting highway is built to promote the ion and electron fast diffusion. This structure can accommodate the volume change of FeP/CoP, which prevent the agglomeration and act as the protecting layer to maintain the integrity of the interface. Impressively, the atomic interface between FeP/CoP is successfully constructed, which could not only introduce enhanced capacitive contribution to facilitate electron transport, but also provide extra active sites to adsorb more Na+ proved by both experiments and density functional theory (DFT) calculations. As expected, FeP/CoP-NA electrode demonstrates an excellent rate capability of 342 mAh g(-1) at a current of 5 A g(-1) current density. , a high specific capacity of 525 mAh g(-1) at 0.2 A g(-1), and a long cycling stability over 8000 cycles at high
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_013%2F0001791" target="_blank" >EF16_013/0001791: IT4Innovations národní superpočítačové centrum - cesta k exascale</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Chemical engineering journal
ISSN
1385-8947
e-ISSN
—
Svazek periodika
413
Číslo periodika v rámci svazku
June
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
9
Strana od-do
—
Kód UT WoS článku
000638225400005
EID výsledku v databázi Scopus
2-s2.0-85094556666