Magnetite-Free Sn-Doped Hematite Nanoflake Layers for Enhanced Photoelectrochemical Water Splitting
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27640%2F22%3A10249988" target="_blank" >RIV/61989100:27640/22:10249988 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989592:15640/22:73618691
Výsledek na webu
<a href="https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202200066" target="_blank" >https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202200066</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/celc.202200066" target="_blank" >10.1002/celc.202200066</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Magnetite-Free Sn-Doped Hematite Nanoflake Layers for Enhanced Photoelectrochemical Water Splitting
Popis výsledku v původním jazyce
In the present work, we report a preparation strategy for hematite phase-pure photoanodes consisting of Sn-doped hematite nanoflakes/hematite thin film bilayer nanostructure (Sn-HB). This approach is based on a two-step annealing process of pure iron films deposited on fluorine doped tin oxide (FTO) substrates by advanced magnetron sputtering. While the high density hematite ultrathin nanoflakes (HNs) with detrimental iron oxide layers (Fe3O4 and/or FeO) are generated during the first annealing step at 400 degrees C for two hours, the second thermal treatment at 800 degrees C for 15 minutes oxidises all the undesired iron oxide phases to a photoactive hematite layer as well as is providing efficient Sn doping of a drop-casted SnCl4 in order to increase the conductivity. The optimized Sn-HB shows an around 11 times higher photocurrent density (0.71 mA cm(-2) at 1.23 V-RHE) compared with a reference hematite photoanode produced from iron foil under the same conditions.
Název v anglickém jazyce
Magnetite-Free Sn-Doped Hematite Nanoflake Layers for Enhanced Photoelectrochemical Water Splitting
Popis výsledku anglicky
In the present work, we report a preparation strategy for hematite phase-pure photoanodes consisting of Sn-doped hematite nanoflakes/hematite thin film bilayer nanostructure (Sn-HB). This approach is based on a two-step annealing process of pure iron films deposited on fluorine doped tin oxide (FTO) substrates by advanced magnetron sputtering. While the high density hematite ultrathin nanoflakes (HNs) with detrimental iron oxide layers (Fe3O4 and/or FeO) are generated during the first annealing step at 400 degrees C for two hours, the second thermal treatment at 800 degrees C for 15 minutes oxidises all the undesired iron oxide phases to a photoactive hematite layer as well as is providing efficient Sn doping of a drop-casted SnCl4 in order to increase the conductivity. The optimized Sn-HB shows an around 11 times higher photocurrent density (0.71 mA cm(-2) at 1.23 V-RHE) compared with a reference hematite photoanode produced from iron foil under the same conditions.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10405 - Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ChemElectroChem
ISSN
2196-0216
e-ISSN
2196-0216
Svazek periodika
9
Číslo periodika v rámci svazku
11
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
7
Strana od-do
nestrankovano
Kód UT WoS článku
000804081200001
EID výsledku v databázi Scopus
2-s2.0-85132340700