Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Band gap and Morphology Engineering of Hematite Nanoflakes from an Ex Situ Sn Doping for Enhanced Photoelectrochemical Water Splitting

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27640%2F22%3A10250582" target="_blank" >RIV/61989100:27640/22:10250582 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/61989592:15640/22:73618688

  • Výsledek na webu

    <a href="https://pubs.acs.org/doi/10.1021/acsomega.2c04028" target="_blank" >https://pubs.acs.org/doi/10.1021/acsomega.2c04028</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1021/acsomega.2c04028" target="_blank" >10.1021/acsomega.2c04028</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Band gap and Morphology Engineering of Hematite Nanoflakes from an Ex Situ Sn Doping for Enhanced Photoelectrochemical Water Splitting

  • Popis výsledku v původním jazyce

    In this article, we report a simple ex situ Sn-doping method on hematite nanoflakes (coded as MSnO2-H) that can protect the nanoflake (NF) morphology against the 800 oC high-temperature annealing process and activate the photoresponse of hematite until 800 nm wavelength excitation. MSnO2-H has been fabricated by dropping SnCl4 ethanol solution on hematite nanoflakes homogeneously grown over the conductive FTO glass substrate and annealed at 500 oC to synthesize the SnO2 nanoparticles on hematite NFs. The Sn-treated samples were then placed in a furnace again, and the sintering process was conducted at 800 oC for 15 min. During this step, structure deformation of hematite occurs normally due to the grain boundary motion and oriented attachment. However, in the case of MSnO2-H, the outer SnO2 nanoparticles efficiently prevented a shape deformation and maintained the nanoflake shape owing to the encapsulation of hematite NFs. Furthermore, the interface of hematite/SnO2 nanoparticles became the spots for a heavy Sn ion doping. We demonstrated the generation of the newly localized states, resulting in an extension of the photoresponse of hematite until 800 nm wavelength light irradiation. Furthermore, we demonstrated that SnO2 nanoparticles can effectively act as a passivation layer, which can reduce the onset potential of hematite for water splitting redox reactions. The optimized MSnO2-H nanostructures showed a 2.84 times higher photocurrent density and 300 mV reduced onset potential compared with a pristine hematite nanoflake photoanode. (C) 2022 The Authors. Published by American Chemical Society.

  • Název v anglickém jazyce

    Band gap and Morphology Engineering of Hematite Nanoflakes from an Ex Situ Sn Doping for Enhanced Photoelectrochemical Water Splitting

  • Popis výsledku anglicky

    In this article, we report a simple ex situ Sn-doping method on hematite nanoflakes (coded as MSnO2-H) that can protect the nanoflake (NF) morphology against the 800 oC high-temperature annealing process and activate the photoresponse of hematite until 800 nm wavelength excitation. MSnO2-H has been fabricated by dropping SnCl4 ethanol solution on hematite nanoflakes homogeneously grown over the conductive FTO glass substrate and annealed at 500 oC to synthesize the SnO2 nanoparticles on hematite NFs. The Sn-treated samples were then placed in a furnace again, and the sintering process was conducted at 800 oC for 15 min. During this step, structure deformation of hematite occurs normally due to the grain boundary motion and oriented attachment. However, in the case of MSnO2-H, the outer SnO2 nanoparticles efficiently prevented a shape deformation and maintained the nanoflake shape owing to the encapsulation of hematite NFs. Furthermore, the interface of hematite/SnO2 nanoparticles became the spots for a heavy Sn ion doping. We demonstrated the generation of the newly localized states, resulting in an extension of the photoresponse of hematite until 800 nm wavelength light irradiation. Furthermore, we demonstrated that SnO2 nanoparticles can effectively act as a passivation layer, which can reduce the onset potential of hematite for water splitting redox reactions. The optimized MSnO2-H nanostructures showed a 2.84 times higher photocurrent density and 300 mV reduced onset potential compared with a pristine hematite nanoflake photoanode. (C) 2022 The Authors. Published by American Chemical Society.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10400 - Chemical sciences

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    ACS Omega

  • ISSN

    2470-1343

  • e-ISSN

    2470-1343

  • Svazek periodika

    7

  • Číslo periodika v rámci svazku

    39

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    9

  • Strana od-do

    35109-35117

  • Kód UT WoS článku

    000861239600001

  • EID výsledku v databázi Scopus

    2-s2.0-85139348321