Band gap and Morphology Engineering of Hematite Nanoflakes from an Ex Situ Sn Doping for Enhanced Photoelectrochemical Water Splitting
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27640%2F22%3A10250582" target="_blank" >RIV/61989100:27640/22:10250582 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989592:15640/22:73618688
Výsledek na webu
<a href="https://pubs.acs.org/doi/10.1021/acsomega.2c04028" target="_blank" >https://pubs.acs.org/doi/10.1021/acsomega.2c04028</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acsomega.2c04028" target="_blank" >10.1021/acsomega.2c04028</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Band gap and Morphology Engineering of Hematite Nanoflakes from an Ex Situ Sn Doping for Enhanced Photoelectrochemical Water Splitting
Popis výsledku v původním jazyce
In this article, we report a simple ex situ Sn-doping method on hematite nanoflakes (coded as MSnO2-H) that can protect the nanoflake (NF) morphology against the 800 oC high-temperature annealing process and activate the photoresponse of hematite until 800 nm wavelength excitation. MSnO2-H has been fabricated by dropping SnCl4 ethanol solution on hematite nanoflakes homogeneously grown over the conductive FTO glass substrate and annealed at 500 oC to synthesize the SnO2 nanoparticles on hematite NFs. The Sn-treated samples were then placed in a furnace again, and the sintering process was conducted at 800 oC for 15 min. During this step, structure deformation of hematite occurs normally due to the grain boundary motion and oriented attachment. However, in the case of MSnO2-H, the outer SnO2 nanoparticles efficiently prevented a shape deformation and maintained the nanoflake shape owing to the encapsulation of hematite NFs. Furthermore, the interface of hematite/SnO2 nanoparticles became the spots for a heavy Sn ion doping. We demonstrated the generation of the newly localized states, resulting in an extension of the photoresponse of hematite until 800 nm wavelength light irradiation. Furthermore, we demonstrated that SnO2 nanoparticles can effectively act as a passivation layer, which can reduce the onset potential of hematite for water splitting redox reactions. The optimized MSnO2-H nanostructures showed a 2.84 times higher photocurrent density and 300 mV reduced onset potential compared with a pristine hematite nanoflake photoanode. (C) 2022 The Authors. Published by American Chemical Society.
Název v anglickém jazyce
Band gap and Morphology Engineering of Hematite Nanoflakes from an Ex Situ Sn Doping for Enhanced Photoelectrochemical Water Splitting
Popis výsledku anglicky
In this article, we report a simple ex situ Sn-doping method on hematite nanoflakes (coded as MSnO2-H) that can protect the nanoflake (NF) morphology against the 800 oC high-temperature annealing process and activate the photoresponse of hematite until 800 nm wavelength excitation. MSnO2-H has been fabricated by dropping SnCl4 ethanol solution on hematite nanoflakes homogeneously grown over the conductive FTO glass substrate and annealed at 500 oC to synthesize the SnO2 nanoparticles on hematite NFs. The Sn-treated samples were then placed in a furnace again, and the sintering process was conducted at 800 oC for 15 min. During this step, structure deformation of hematite occurs normally due to the grain boundary motion and oriented attachment. However, in the case of MSnO2-H, the outer SnO2 nanoparticles efficiently prevented a shape deformation and maintained the nanoflake shape owing to the encapsulation of hematite NFs. Furthermore, the interface of hematite/SnO2 nanoparticles became the spots for a heavy Sn ion doping. We demonstrated the generation of the newly localized states, resulting in an extension of the photoresponse of hematite until 800 nm wavelength light irradiation. Furthermore, we demonstrated that SnO2 nanoparticles can effectively act as a passivation layer, which can reduce the onset potential of hematite for water splitting redox reactions. The optimized MSnO2-H nanostructures showed a 2.84 times higher photocurrent density and 300 mV reduced onset potential compared with a pristine hematite nanoflake photoanode. (C) 2022 The Authors. Published by American Chemical Society.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10400 - Chemical sciences
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ACS Omega
ISSN
2470-1343
e-ISSN
2470-1343
Svazek periodika
7
Číslo periodika v rámci svazku
39
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
9
Strana od-do
35109-35117
Kód UT WoS článku
000861239600001
EID výsledku v databázi Scopus
2-s2.0-85139348321