Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Hybrid potential model with high feasibility and flexibility for metallic and covalent solids

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27640%2F23%3A10253190" target="_blank" >RIV/61989100:27640/23:10253190 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/61989100:27740/23:10253190

  • Výsledek na webu

    <a href="https://journals.aps.org/prb/abstract/10.1103/PhysRevB.108.024108" target="_blank" >https://journals.aps.org/prb/abstract/10.1103/PhysRevB.108.024108</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1103/PhysRevB.108.024108" target="_blank" >10.1103/PhysRevB.108.024108</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Hybrid potential model with high feasibility and flexibility for metallic and covalent solids

  • Popis výsledku v původním jazyce

    Pair-functional potentials are generally used for metallic solids, whereas cluster potentials are more appropriate for covalent solids; however, both face critical difficulties that cannot be solved based purely on the optimization of potential functions, e.g., the lattice stability for hcp metals with high c/a ratios and the conflict between stacking-fault energy and cleavage energy for covalent solids, which can be attributed to their respective physical foundations and approximations according to their bonding characteristics. By incorporating the long-range many-body effect in pair-functional potentials and the short-range angular-dependent terms in cluster potentials, a unified hybrid potential model is physically justified and proposed in the present study for both metallic and covalent bonding solids to resolve the aforementioned critical issues and other specific cases. The proposed model was not only successfully demonstrated for a series of elemental solids, including 20 fcc, bcc, and hcp metals and three covalent elements, but also was extended to construct cross potentials for three representative compound systems, i.e., CuNi, TiC, and BN, which suggests that the present hybrid potential model possess higher compatibility and feasibility for various metallic and covalent systems than the respective pair-functional potentials and cluster ones. Overall, the hybrid potential model not only complements the current potential library but also builds a foundation for further potential development with high flexibility.

  • Název v anglickém jazyce

    Hybrid potential model with high feasibility and flexibility for metallic and covalent solids

  • Popis výsledku anglicky

    Pair-functional potentials are generally used for metallic solids, whereas cluster potentials are more appropriate for covalent solids; however, both face critical difficulties that cannot be solved based purely on the optimization of potential functions, e.g., the lattice stability for hcp metals with high c/a ratios and the conflict between stacking-fault energy and cleavage energy for covalent solids, which can be attributed to their respective physical foundations and approximations according to their bonding characteristics. By incorporating the long-range many-body effect in pair-functional potentials and the short-range angular-dependent terms in cluster potentials, a unified hybrid potential model is physically justified and proposed in the present study for both metallic and covalent bonding solids to resolve the aforementioned critical issues and other specific cases. The proposed model was not only successfully demonstrated for a series of elemental solids, including 20 fcc, bcc, and hcp metals and three covalent elements, but also was extended to construct cross potentials for three representative compound systems, i.e., CuNi, TiC, and BN, which suggests that the present hybrid potential model possess higher compatibility and feasibility for various metallic and covalent systems than the respective pair-functional potentials and cluster ones. Overall, the hybrid potential model not only complements the current potential library but also builds a foundation for further potential development with high flexibility.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10302 - Condensed matter physics (including formerly solid state physics, supercond.)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/LUASK22099" target="_blank" >LUASK22099: Vliv termoelektrických efektů na spin-orbitalní torze v 2D van der Waalsových materiálech</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Physical review B

  • ISSN

    2469-9950

  • e-ISSN

    2469-9969

  • Svazek periodika

    108

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    15

  • Strana od-do

  • Kód UT WoS článku

    001061021000002

  • EID výsledku v databázi Scopus

    2-s2.0-85166956650