Band engineering in iron and silver co-doped double perovskite nanocrystals for selective photocatalytic CO2 reduction
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27640%2F24%3A10255464" target="_blank" >RIV/61989100:27640/24:10255464 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989592:15640/24:73625980 RIV/61989592:15310/24:73625980 RIV/61989100:27740/24:10255464
Výsledek na webu
<a href="https://pubs.rsc.org/en/content/articlelanding/2024/ta/d4ta00676c" target="_blank" >https://pubs.rsc.org/en/content/articlelanding/2024/ta/d4ta00676c</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1039/d4ta00676c" target="_blank" >10.1039/d4ta00676c</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Band engineering in iron and silver co-doped double perovskite nanocrystals for selective photocatalytic CO2 reduction
Popis výsledku v původním jazyce
Double metal cation halide perovskites are promising alternatives to lead halide perovskites due to their exceptional compositional flexibility and stability. However, their utilization in solar-light harvesting applications has been hindered by their large band gap and the complexity of producing doped or alloyed materials with desirable optoelectronic properties. In this study, we report the colloidal synthesis of iron-doped Cs2NaInCl6 double perovskite nanocrystals (NCs), leading to a significant extension of the absorption edge from 330 nm to 505 nm. We also demonstrate that simultaneous doping with Fe3+ and Ag+ ions allows significant reduction of the optical band gap and precise tuning of electronic band structures of the resulting NCs. The enhanced absorption in the visible region is attributed to the substitution of In-5s by the Fe-3d state, while the introduction of the Ag 4d state upshifts the valence band maximum, inducing a transformative change in the band structure, as confirmed by density functional theory (DFT) calculations. Remarkably, by precisely controlling the band positions of the Fe3+-doped Cs2Ag0.5Na0.5InCl6 NCs, we accomplished the selective photocatalytic reduction of CO2 into CH4, making them readily available for solar-energy conversion technologies. (C) 2024 The Royal Society of Chemistry.
Název v anglickém jazyce
Band engineering in iron and silver co-doped double perovskite nanocrystals for selective photocatalytic CO2 reduction
Popis výsledku anglicky
Double metal cation halide perovskites are promising alternatives to lead halide perovskites due to their exceptional compositional flexibility and stability. However, their utilization in solar-light harvesting applications has been hindered by their large band gap and the complexity of producing doped or alloyed materials with desirable optoelectronic properties. In this study, we report the colloidal synthesis of iron-doped Cs2NaInCl6 double perovskite nanocrystals (NCs), leading to a significant extension of the absorption edge from 330 nm to 505 nm. We also demonstrate that simultaneous doping with Fe3+ and Ag+ ions allows significant reduction of the optical band gap and precise tuning of electronic band structures of the resulting NCs. The enhanced absorption in the visible region is attributed to the substitution of In-5s by the Fe-3d state, while the introduction of the Ag 4d state upshifts the valence band maximum, inducing a transformative change in the band structure, as confirmed by density functional theory (DFT) calculations. Remarkably, by precisely controlling the band positions of the Fe3+-doped Cs2Ag0.5Na0.5InCl6 NCs, we accomplished the selective photocatalytic reduction of CO2 into CH4, making them readily available for solar-energy conversion technologies. (C) 2024 The Royal Society of Chemistry.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10400 - Chemical sciences
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Materials Chemistry A
ISSN
2050-7488
e-ISSN
2050-7496
Svazek periodika
12
Číslo periodika v rámci svazku
34
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
14
Strana od-do
23035-23048
Kód UT WoS článku
001284838500001
EID výsledku v databázi Scopus
2-s2.0-85200904355