Van Krevelen diagrams based on machine learning visualize feedstock-product relationships in thermal conversion processes
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27650%2F23%3A10254087" target="_blank" >RIV/61989100:27650/23:10254087 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.nature.com/articles/s42004-023-01077-z" target="_blank" >https://www.nature.com/articles/s42004-023-01077-z</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1038/s42004-023-01077-z" target="_blank" >10.1038/s42004-023-01077-z</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Van Krevelen diagrams based on machine learning visualize feedstock-product relationships in thermal conversion processes
Popis výsledku v původním jazyce
Feedstock properties play a crucial role in thermal conversion processes, where understanding the influence of these properties on treatment performance is essential for optimizing both feedstock selection and the overall process. In this study, a series of van Krevelen diagrams were generated to illustrate the impact of H/C and O/C ratios of feedstock on the products obtained from six commonly used thermal conversion techniques: torrefaction, hydrothermal carbonization, hydrothermal liquefaction, hydrothermal gasification, pyrolysis, and gasification. Machine learning methods were employed, utilizing data, methods, and results from corresponding studies in this field. Furthermore, the reliability of the constructed van Krevelen diagrams was analyzed to assess their dependability. The van Krevelen diagrams developed in this work systematically provide visual representations of the relationships between feedstock and products in thermal conversion processes, thereby aiding in optimizing the selection of feedstock and the choice of thermal conversion technique
Název v anglickém jazyce
Van Krevelen diagrams based on machine learning visualize feedstock-product relationships in thermal conversion processes
Popis výsledku anglicky
Feedstock properties play a crucial role in thermal conversion processes, where understanding the influence of these properties on treatment performance is essential for optimizing both feedstock selection and the overall process. In this study, a series of van Krevelen diagrams were generated to illustrate the impact of H/C and O/C ratios of feedstock on the products obtained from six commonly used thermal conversion techniques: torrefaction, hydrothermal carbonization, hydrothermal liquefaction, hydrothermal gasification, pyrolysis, and gasification. Machine learning methods were employed, utilizing data, methods, and results from corresponding studies in this field. Furthermore, the reliability of the constructed van Krevelen diagrams was analyzed to assess their dependability. The van Krevelen diagrams developed in this work systematically provide visual representations of the relationships between feedstock and products in thermal conversion processes, thereby aiding in optimizing the selection of feedstock and the choice of thermal conversion technique
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10200 - Computer and information sciences
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Communications Chemistry
ISSN
2399-3669
e-ISSN
2399-3669
Svazek periodika
6
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
10
Strana od-do
—
Kód UT WoS článku
001122502600001
EID výsledku v databázi Scopus
2-s2.0-85179331588