Ru clusters anchored on Magnéli phase Ti4O7 nanofibers enables flexible and highly efficient Li-O2 batteries
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27710%2F22%3A10250637" target="_blank" >RIV/61989100:27710/22:10250637 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S2405829722002793" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2405829722002793</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ensm.2022.05.028" target="_blank" >10.1016/j.ensm.2022.05.028</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Ru clusters anchored on Magnéli phase Ti4O7 nanofibers enables flexible and highly efficient Li-O2 batteries
Popis výsledku v původním jazyce
Lithium-oxygen (Li-O2) batteries have attracted tremendous attention due to their high specific energy density. However, their sluggish conversion kinetics and detrimental parasitic reactions would deteriorate the lifespan of batteries. Herein, a combined density functional theory (DFT) calculation and experimental approach is carried out to design an efficient cathode electrocatalyst for Li-O2 batteries. A self-supporting film of Ru clusters anchored on Magnéli phase Ti4O7 enriched with oxygen vacancy (Ru/Ti4O7) is fabricated upon electrospinning and carbothermal reduction. In such a synergistic configuration of Ru/Ti4O7 hybrid film, the strong metal-support interaction (SMSI) between Ru and Ti4O7 can improve the charge transfer at the interface and enhance the adsorption energy of intermediates, accelerating the reaction kinetics of the formation/decomposition of Li2O2. Benefitting from this SMSI, the electrochemical stability of Ru/Ti4O7 over cycling is also enhanced. As a result, as-prepared Ru/Ti4O7 cathodes could realize excellent electrochemical performance, including high specific capacity (11000 mAh g-1), low discharge/charge polarization (0.36 V), long lifespan (> 100 cycles) and superior rate capability. Furthermore, a flexible Li-O2 pouch cell, constructed with as-fabricated Ru/Ti4O7 film cathode, lithium foil anode and GPE, can exert an impressive areal capacity of 5 mAh cm-2 with a low voltage gap of 0.82 V in ambient air. This work suggests that the activity of catalysts can be significantly enhanced with interfacial modification, offering an efficient approach for rational designing of electrocatalysts for use in Li-air batteries and beyond. (C) 2022
Název v anglickém jazyce
Ru clusters anchored on Magnéli phase Ti4O7 nanofibers enables flexible and highly efficient Li-O2 batteries
Popis výsledku anglicky
Lithium-oxygen (Li-O2) batteries have attracted tremendous attention due to their high specific energy density. However, their sluggish conversion kinetics and detrimental parasitic reactions would deteriorate the lifespan of batteries. Herein, a combined density functional theory (DFT) calculation and experimental approach is carried out to design an efficient cathode electrocatalyst for Li-O2 batteries. A self-supporting film of Ru clusters anchored on Magnéli phase Ti4O7 enriched with oxygen vacancy (Ru/Ti4O7) is fabricated upon electrospinning and carbothermal reduction. In such a synergistic configuration of Ru/Ti4O7 hybrid film, the strong metal-support interaction (SMSI) between Ru and Ti4O7 can improve the charge transfer at the interface and enhance the adsorption energy of intermediates, accelerating the reaction kinetics of the formation/decomposition of Li2O2. Benefitting from this SMSI, the electrochemical stability of Ru/Ti4O7 over cycling is also enhanced. As a result, as-prepared Ru/Ti4O7 cathodes could realize excellent electrochemical performance, including high specific capacity (11000 mAh g-1), low discharge/charge polarization (0.36 V), long lifespan (> 100 cycles) and superior rate capability. Furthermore, a flexible Li-O2 pouch cell, constructed with as-fabricated Ru/Ti4O7 film cathode, lithium foil anode and GPE, can exert an impressive areal capacity of 5 mAh cm-2 with a low voltage gap of 0.82 V in ambient air. This work suggests that the activity of catalysts can be significantly enhanced with interfacial modification, offering an efficient approach for rational designing of electrocatalysts for use in Li-air batteries and beyond. (C) 2022
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20400 - Chemical engineering
Návaznosti výsledku
Projekt
—
Návaznosti
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Energy Storage Materials
ISSN
2405-8297
e-ISSN
—
Svazek periodika
50
Číslo periodika v rámci svazku
September 2022
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
10
Strana od-do
355-364
Kód UT WoS článku
000836432000002
EID výsledku v databázi Scopus
2-s2.0-85131098008