Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Ru clusters anchored on Magnéli phase Ti4O7 nanofibers enables flexible and highly efficient Li-O2 batteries

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27710%2F22%3A10250637" target="_blank" >RIV/61989100:27710/22:10250637 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S2405829722002793" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2405829722002793</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.ensm.2022.05.028" target="_blank" >10.1016/j.ensm.2022.05.028</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Ru clusters anchored on Magnéli phase Ti4O7 nanofibers enables flexible and highly efficient Li-O2 batteries

  • Popis výsledku v původním jazyce

    Lithium-oxygen (Li-O2) batteries have attracted tremendous attention due to their high specific energy density. However, their sluggish conversion kinetics and detrimental parasitic reactions would deteriorate the lifespan of batteries. Herein, a combined density functional theory (DFT) calculation and experimental approach is carried out to design an efficient cathode electrocatalyst for Li-O2 batteries. A self-supporting film of Ru clusters anchored on Magnéli phase Ti4O7 enriched with oxygen vacancy (Ru/Ti4O7) is fabricated upon electrospinning and carbothermal reduction. In such a synergistic configuration of Ru/Ti4O7 hybrid film, the strong metal-support interaction (SMSI) between Ru and Ti4O7 can improve the charge transfer at the interface and enhance the adsorption energy of intermediates, accelerating the reaction kinetics of the formation/decomposition of Li2O2. Benefitting from this SMSI, the electrochemical stability of Ru/Ti4O7 over cycling is also enhanced. As a result, as-prepared Ru/Ti4O7 cathodes could realize excellent electrochemical performance, including high specific capacity (11000 mAh g-1), low discharge/charge polarization (0.36 V), long lifespan (&gt; 100 cycles) and superior rate capability. Furthermore, a flexible Li-O2 pouch cell, constructed with as-fabricated Ru/Ti4O7 film cathode, lithium foil anode and GPE, can exert an impressive areal capacity of 5 mAh cm-2 with a low voltage gap of 0.82 V in ambient air. This work suggests that the activity of catalysts can be significantly enhanced with interfacial modification, offering an efficient approach for rational designing of electrocatalysts for use in Li-air batteries and beyond. (C) 2022

  • Název v anglickém jazyce

    Ru clusters anchored on Magnéli phase Ti4O7 nanofibers enables flexible and highly efficient Li-O2 batteries

  • Popis výsledku anglicky

    Lithium-oxygen (Li-O2) batteries have attracted tremendous attention due to their high specific energy density. However, their sluggish conversion kinetics and detrimental parasitic reactions would deteriorate the lifespan of batteries. Herein, a combined density functional theory (DFT) calculation and experimental approach is carried out to design an efficient cathode electrocatalyst for Li-O2 batteries. A self-supporting film of Ru clusters anchored on Magnéli phase Ti4O7 enriched with oxygen vacancy (Ru/Ti4O7) is fabricated upon electrospinning and carbothermal reduction. In such a synergistic configuration of Ru/Ti4O7 hybrid film, the strong metal-support interaction (SMSI) between Ru and Ti4O7 can improve the charge transfer at the interface and enhance the adsorption energy of intermediates, accelerating the reaction kinetics of the formation/decomposition of Li2O2. Benefitting from this SMSI, the electrochemical stability of Ru/Ti4O7 over cycling is also enhanced. As a result, as-prepared Ru/Ti4O7 cathodes could realize excellent electrochemical performance, including high specific capacity (11000 mAh g-1), low discharge/charge polarization (0.36 V), long lifespan (&gt; 100 cycles) and superior rate capability. Furthermore, a flexible Li-O2 pouch cell, constructed with as-fabricated Ru/Ti4O7 film cathode, lithium foil anode and GPE, can exert an impressive areal capacity of 5 mAh cm-2 with a low voltage gap of 0.82 V in ambient air. This work suggests that the activity of catalysts can be significantly enhanced with interfacial modification, offering an efficient approach for rational designing of electrocatalysts for use in Li-air batteries and beyond. (C) 2022

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20400 - Chemical engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    V - Vyzkumna aktivita podporovana z jinych verejnych zdroju

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Energy Storage Materials

  • ISSN

    2405-8297

  • e-ISSN

  • Svazek periodika

    50

  • Číslo periodika v rámci svazku

    September 2022

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    10

  • Strana od-do

    355-364

  • Kód UT WoS článku

    000836432000002

  • EID výsledku v databázi Scopus

    2-s2.0-85131098008