Enhanced performance of Si-based Li-ion batteries through elastic cushioning with hollow graphene shells
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27710%2F22%3A10251031" target="_blank" >RIV/61989100:27710/22:10251031 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.webofscience.com/wos/woscc/full-record/WOS:000798084500001" target="_blank" >https://www.webofscience.com/wos/woscc/full-record/WOS:000798084500001</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s40843-021-2031-8" target="_blank" >10.1007/s40843-021-2031-8</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Enhanced performance of Si-based Li-ion batteries through elastic cushioning with hollow graphene shells
Popis výsledku v původním jazyce
Silicon (Si) is a promising anode material for next-generation Li-ion batteries. The nanometer-sized Si could alleviate the pulverization caused by large volume changes during deep cycling. However, compression between agglomerated Si particles causes Si cracking and electrode failure. Considering this, we engineered a mechanical cushioning space between Si particles via elastic hollow graphene shells (GSs) to flexibly buffer volume changes and maintain the stability of the electrode structure. The stress generated from the Si volume expansion during lithiation was mechanically buffered and gently released by compression of the hollow space of the GS. In this Si/GS composite electrode, GS also reduced the local agglomeration of Si particles and effectively improved the overall conductivity. Considering these advantages, the designed Si/GS electrode showed an enhanced cycling performance with more than 1200 mA h g(-1) at 0.8 A g(-1) and an excellent rate capability of 1025 mA h g(-1) at 4 A g(-1) after 200 cycles.
Název v anglickém jazyce
Enhanced performance of Si-based Li-ion batteries through elastic cushioning with hollow graphene shells
Popis výsledku anglicky
Silicon (Si) is a promising anode material for next-generation Li-ion batteries. The nanometer-sized Si could alleviate the pulverization caused by large volume changes during deep cycling. However, compression between agglomerated Si particles causes Si cracking and electrode failure. Considering this, we engineered a mechanical cushioning space between Si particles via elastic hollow graphene shells (GSs) to flexibly buffer volume changes and maintain the stability of the electrode structure. The stress generated from the Si volume expansion during lithiation was mechanically buffered and gently released by compression of the hollow space of the GS. In this Si/GS composite electrode, GS also reduced the local agglomeration of Si particles and effectively improved the overall conductivity. Considering these advantages, the designed Si/GS electrode showed an enhanced cycling performance with more than 1200 mA h g(-1) at 0.8 A g(-1) and an excellent rate capability of 1025 mA h g(-1) at 4 A g(-1) after 200 cycles.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20400 - Chemical engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000853" target="_blank" >EF16_019/0000853: Institut environmentálních technologií - excelentní výzkum</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Science China-Materials
ISSN
2095-8226
e-ISSN
2199-4501
Svazek periodika
Neuveden
Číslo periodika v rámci svazku
September 2022
Stát vydavatele periodika
CN - Čínská lidová republika
Počet stran výsledku
11
Strana od-do
nestrankovano
Kód UT WoS článku
000798084500001
EID výsledku v databázi Scopus
—