TiO2/WO3/graphene for photocatalytic H2 generation and benzene removal: Widely employed still an ambiguous system
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27710%2F23%3A10252989" target="_blank" >RIV/61989100:27710/23:10252989 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/abs/pii/S1010603023004859" target="_blank" >https://www.sciencedirect.com/science/article/abs/pii/S1010603023004859</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jphotochem.2023.115020" target="_blank" >10.1016/j.jphotochem.2023.115020</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
TiO2/WO3/graphene for photocatalytic H2 generation and benzene removal: Widely employed still an ambiguous system
Popis výsledku v původním jazyce
Clean energy, as well as air and water pollution, have emerged as significant challenges in today's society. Photocatalysis offers a potential solution to address these issues. It is an advanced oxidation process that utilises light to activate a semiconductor. Among photocatalytically active materials, titanium dioxide (TiO2) semiconductors are widely recognised. However, the performance of TiO2 is hindered by its wide band gap (TILDE OPERATOR+D913.2 eV) and high recombination rate of photo-generated electron-hole (eMINUS SIGN MINUS SIGN h+) pairs. To overcome these limitations, TiO2 in heterojunction with tungsten trioxide (WO3) has gained substantial attention for various photocatalytic applications. However, the literature reports contradictory behaviours due to variations in synthesis techniques and photocatalytic applications. In this study, we extensively investigated the photocatalytic properties of the TiO2/WO3 system for the removal of gaseous benzene, and H2 generation. To enhance the transport and lifetime of photo-generated excitons, graphene nanoplatelets were incorporated into the TiO2/WO3 system. We examined several parameters that influenced the photocatalytic activity of the synthesised materials, including the WO3 to TiO2 ratio, the presence of graphene, and the specific photocatalytic application. Interestingly, the position of the conduction bands played a crucial role in hydrogen generation. The TiO2/WO3 system exhibited a type-II heterojunction. While the hybridisation of TiO2 with WO3 was found to be detrimental to light-induced benzene removal and H2 generation, the modification of TiO2/WO3 with graphene nanoplatelets significantly improved the photocatalytic hydrogen generation. Notably, the specimen with 15 mol% WO3 and 1 wt% graphene demonstrated a five-fold increase in yield compared to its counterpart without graphene. These findings provide valuable insights for data-driven catalysis research. (C) 2023
Název v anglickém jazyce
TiO2/WO3/graphene for photocatalytic H2 generation and benzene removal: Widely employed still an ambiguous system
Popis výsledku anglicky
Clean energy, as well as air and water pollution, have emerged as significant challenges in today's society. Photocatalysis offers a potential solution to address these issues. It is an advanced oxidation process that utilises light to activate a semiconductor. Among photocatalytically active materials, titanium dioxide (TiO2) semiconductors are widely recognised. However, the performance of TiO2 is hindered by its wide band gap (TILDE OPERATOR+D913.2 eV) and high recombination rate of photo-generated electron-hole (eMINUS SIGN MINUS SIGN h+) pairs. To overcome these limitations, TiO2 in heterojunction with tungsten trioxide (WO3) has gained substantial attention for various photocatalytic applications. However, the literature reports contradictory behaviours due to variations in synthesis techniques and photocatalytic applications. In this study, we extensively investigated the photocatalytic properties of the TiO2/WO3 system for the removal of gaseous benzene, and H2 generation. To enhance the transport and lifetime of photo-generated excitons, graphene nanoplatelets were incorporated into the TiO2/WO3 system. We examined several parameters that influenced the photocatalytic activity of the synthesised materials, including the WO3 to TiO2 ratio, the presence of graphene, and the specific photocatalytic application. Interestingly, the position of the conduction bands played a crucial role in hydrogen generation. The TiO2/WO3 system exhibited a type-II heterojunction. While the hybridisation of TiO2 with WO3 was found to be detrimental to light-induced benzene removal and H2 generation, the modification of TiO2/WO3 with graphene nanoplatelets significantly improved the photocatalytic hydrogen generation. Notably, the specimen with 15 mol% WO3 and 1 wt% graphene demonstrated a five-fold increase in yield compared to its counterpart without graphene. These findings provide valuable insights for data-driven catalysis research. (C) 2023
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10403 - Physical chemistry
Návaznosti výsledku
Projekt
<a href="/cs/project/EF17_049%2F0008419" target="_blank" >EF17_049/0008419: Podpora mezisektorové spolupráce v oblasti snižování polutantů v životním prostředí a využití odpadů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Photochemistry and Photobiology A: Chemistry
ISSN
1010-6030
e-ISSN
1873-2666
Svazek periodika
445
Číslo periodika v rámci svazku
November
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
10
Strana od-do
—
Kód UT WoS článku
001123745400001
EID výsledku v databázi Scopus
2-s2.0-85165351222