Backward neural network (BNN) based multilevel control for enhancing the quality of an islanded RES DC microgrid under variable communication network
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27730%2F24%3A10255364" target="_blank" >RIV/61989100:27730/24:10255364 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.cell.com/heliyon/fulltext/S2405-8440(24)08677-8" target="_blank" >https://www.cell.com/heliyon/fulltext/S2405-8440(24)08677-8</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.heliyon.2024.e32646" target="_blank" >10.1016/j.heliyon.2024.e32646</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Backward neural network (BNN) based multilevel control for enhancing the quality of an islanded RES DC microgrid under variable communication network
Popis výsledku v původním jazyce
Microgrids (MGs) and energy communities have been widely implemented, leading to the participation of multiple stakeholders in distribution networks. Insufficient information infrastructure, particularly in rural distribution networks, is leading to a growing number of operational blind areas in distribution networks. An optimization challenge is addressed in multi -feeder microgrid systems to handle load sharing and voltage management by implementing a backward neural network (BNN) as a robust control approach. The control technique consists of a neural network that optimizes the control strategy to calculate the operating directions for each distributed generating point. Neural networks improve control during communication connectivity issues to ensure the computation of operational directions. Traditional control of DC microgrids is susceptible to communication link delays. The proposed BNN technique can be expanded to encompass the entire multi -feeder network for precise load distribution and voltage management. The BNN results are achieved through mathematical analysis of different load conditions and uncertain line characteristics in a radial network of a multi -feeder microgrid, demonstrating the effectiveness of the proposed approach. The proposed BNN technique is more effective than conventional control in accurately distributing the load and regulating the feeder voltage, especially during communication failure.
Název v anglickém jazyce
Backward neural network (BNN) based multilevel control for enhancing the quality of an islanded RES DC microgrid under variable communication network
Popis výsledku anglicky
Microgrids (MGs) and energy communities have been widely implemented, leading to the participation of multiple stakeholders in distribution networks. Insufficient information infrastructure, particularly in rural distribution networks, is leading to a growing number of operational blind areas in distribution networks. An optimization challenge is addressed in multi -feeder microgrid systems to handle load sharing and voltage management by implementing a backward neural network (BNN) as a robust control approach. The control technique consists of a neural network that optimizes the control strategy to calculate the operating directions for each distributed generating point. Neural networks improve control during communication connectivity issues to ensure the computation of operational directions. Traditional control of DC microgrids is susceptible to communication link delays. The proposed BNN technique can be expanded to encompass the entire multi -feeder network for precise load distribution and voltage management. The BNN results are achieved through mathematical analysis of different load conditions and uncertain line characteristics in a radial network of a multi -feeder microgrid, demonstrating the effectiveness of the proposed approach. The proposed BNN technique is more effective than conventional control in accurately distributing the load and regulating the feeder voltage, especially during communication failure.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20200 - Electrical engineering, Electronic engineering, Information engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/TN02000025" target="_blank" >TN02000025: Národní centrum pro energetiku II</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Heliyon
ISSN
2405-8440
e-ISSN
2405-8440
Svazek periodika
10
Číslo periodika v rámci svazku
12
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
16
Strana od-do
nestránkováno
Kód UT WoS článku
001258370900001
EID výsledku v databázi Scopus
2-s2.0-85196004339