Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Prediction of power conversion efficiency parameter of inverted organic solar cells using artificial intelligence techniques

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27730%2F24%3A10256190" target="_blank" >RIV/61989100:27730/24:10256190 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.nature.com/articles/s41598-024-77112-3" target="_blank" >https://www.nature.com/articles/s41598-024-77112-3</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1038/s41598-024-77112-3" target="_blank" >10.1038/s41598-024-77112-3</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Prediction of power conversion efficiency parameter of inverted organic solar cells using artificial intelligence techniques

  • Popis výsledku v původním jazyce

    Organic photovoltaic (OPV) cells are at the forefront of sustainable energy generation due to their lightness, flexibility, and low production costs. These characteristics make OPVs a promising solution for achieving sustainable development goals. However, predicting their lifetime remains challenging task due to complex interactions between internal factors such as material degradation, interface stability, and morphological changes, and external factors like environmental conditions, mechanical stress, and encapsulation quality. In this study, we propose a machine learning-based technique to predict the degradation over time of OPVs. Specifically, we employ multi-layer perceptron (MLP) and long short-term memory (LSTM) neural networks to predict the power conversion efficiency (PCE) of inverted organic solar cells (iOSCs) made from the blend PTB7-Th:PC70BM, with PFN as the electron transport layer (ETL), fabricated under an N2 environment. We evaluate the performance of the proposed technique using several statistical metrics, including mean squared error (MSE), root mean squared error (rMSE), relative squared error (RSE), relative absolute error (RAE), and the correlation coefficient (R). The results demonstrate the high accuracy of our proposed technique, evidenced by the minimal error between predicted and experimentally measured PCE values: 0.0325 for RSE, 0.0729 for RAE, 0.2223 for rMSE, and 0.0541 for MSE using the LSTM model. These findings highlight the potential of proposed models in accurately predicting the performance of OPVs, thus contributing to the advancement of sustainable energy technologies.

  • Název v anglickém jazyce

    Prediction of power conversion efficiency parameter of inverted organic solar cells using artificial intelligence techniques

  • Popis výsledku anglicky

    Organic photovoltaic (OPV) cells are at the forefront of sustainable energy generation due to their lightness, flexibility, and low production costs. These characteristics make OPVs a promising solution for achieving sustainable development goals. However, predicting their lifetime remains challenging task due to complex interactions between internal factors such as material degradation, interface stability, and morphological changes, and external factors like environmental conditions, mechanical stress, and encapsulation quality. In this study, we propose a machine learning-based technique to predict the degradation over time of OPVs. Specifically, we employ multi-layer perceptron (MLP) and long short-term memory (LSTM) neural networks to predict the power conversion efficiency (PCE) of inverted organic solar cells (iOSCs) made from the blend PTB7-Th:PC70BM, with PFN as the electron transport layer (ETL), fabricated under an N2 environment. We evaluate the performance of the proposed technique using several statistical metrics, including mean squared error (MSE), root mean squared error (rMSE), relative squared error (RSE), relative absolute error (RAE), and the correlation coefficient (R). The results demonstrate the high accuracy of our proposed technique, evidenced by the minimal error between predicted and experimentally measured PCE values: 0.0325 for RSE, 0.0729 for RAE, 0.2223 for rMSE, and 0.0541 for MSE using the LSTM model. These findings highlight the potential of proposed models in accurately predicting the performance of OPVs, thus contributing to the advancement of sustainable energy technologies.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20200 - Electrical engineering, Electronic engineering, Information engineering

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/TN02000025" target="_blank" >TN02000025: Národní centrum pro energetiku II</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Scientific Reports

  • ISSN

    2045-2322

  • e-ISSN

  • Svazek periodika

    14

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    23

  • Strana od-do

    1-23

  • Kód UT WoS článku

    001345876000029

  • EID výsledku v databázi Scopus

    2-s2.0-85208164564