Power output models of Ordinary Differential Equations by Polynomial and Recurrent Neural Networks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F13%3A86087491" target="_blank" >RIV/61989100:27740/13:86087491 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-3-319-01781-5_1" target="_blank" >http://dx.doi.org/10.1007/978-3-319-01781-5_1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-01781-5_1" target="_blank" >10.1007/978-3-319-01781-5_1</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Power output models of Ordinary Differential Equations by Polynomial and Recurrent Neural Networks
Popis výsledku v původním jazyce
The production of renewable energy sources is unstable, influenced a weather frame. Photovoltaic power plant output is primarily dependent on the solar illuminance of a locality, which is possible to predict according to meteorological forecasts (Aladin). Wind charger power output is induced mainly by a current wind speed, which depends on several weather standings. Presented time-series neural network models can define incomputable functions of power output or quantities, which direct influence it. Differential polynomial neural network is a new neural network type, which makes use of data relations, not only absolute interval values of variables as artificial neural networks do. Its output is formed by a sum of fractional derivative terms, which substitute a general differential equation, defining a system model. In the case of time-series data application an ordinary differential equation is created with time derivatives. Recurrent neural network proved to form simple solid time-ser
Název v anglickém jazyce
Power output models of Ordinary Differential Equations by Polynomial and Recurrent Neural Networks
Popis výsledku anglicky
The production of renewable energy sources is unstable, influenced a weather frame. Photovoltaic power plant output is primarily dependent on the solar illuminance of a locality, which is possible to predict according to meteorological forecasts (Aladin). Wind charger power output is induced mainly by a current wind speed, which depends on several weather standings. Presented time-series neural network models can define incomputable functions of power output or quantities, which direct influence it. Differential polynomial neural network is a new neural network type, which makes use of data relations, not only absolute interval values of variables as artificial neural networks do. Its output is formed by a sum of fractional derivative terms, which substitute a general differential equation, defining a system model. In the case of time-series data application an ordinary differential equation is created with time derivatives. Recurrent neural network proved to form simple solid time-ser
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/EE2.3.30.0016" target="_blank" >EE2.3.30.0016: Příležitost pro mladé výzkumníky</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2013
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Advances in Intelligent Systems and Computing. Volume 237
ISBN
978-3-319-01780-8
ISSN
2194-5357
e-ISSN
—
Počet stran výsledku
11
Strana od-do
1-11
Název nakladatele
Springer
Místo vydání
Berlin
Místo konání akce
Ostrava
Datum konání akce
22. 8. 2013
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—